Abstract

We discuss the accurate generation of complex optical fields using phase holograms that provide the optimum diffraction efficiency. In each considered case, the phase modulation of the employed hologram is identical to the phase of the desired optical field. We show that periodic and quasiperiodic nondiffracting optical fields, mathematically obtained through the superposition of multiple plane waves, can be generated with high fidelity using this approach.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Arrizón, G. Méndez, and D. Sánchez-de-La-Llave, Opt. Express 13, 7913 (2005).
    [CrossRef]
  2. P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, Opt. Commun. 175, 347 (2000).
    [CrossRef]
  3. J. P. Kirk and A. L. Jones, J. Opt. Soc. Am. 61, 1023 (1971).
    [CrossRef]
  4. R. W. Cohn and M. Liang, Appl. Opt. 33, 4406 (1994).
    [CrossRef]
  5. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999).
    [CrossRef]
  6. V. Arrizón, Opt. Lett. 28, 2521 (2003).
    [CrossRef]
  7. V. Arrizón, U. Ruiz, R. Carrada, and L. A. Gonzalez, J. Opt. Soc. Am. A 24, 3500 (2007).
    [CrossRef]
  8. T. Ando, Y. Ohtake, N. Matsumoto, T. Inoue, and N. Fukuchi, Opt. Lett. 34, 34 (2009).
    [CrossRef]
  9. V. Arrizón, D. Sánchez-de-La-Llave, U. Ruiz, and G. Méndez, Opt. Lett. 34, 1456 (2009).
    [CrossRef]
  10. V. Arrizón, D. Sánchez-de-La-Llave, G. Méndez, and U. Ruiz, Opt. Express 19, 10553 (2011).
    [CrossRef]
  11. F. Wyrowski, Opt. Lett. 16, 1915 (1991).
    [CrossRef]
  12. R. J. Hernández-Hernández, R. A. Terborg, I. Ricardez-Vargas, and K. Volke-Sepúlveda, Appl. Opt. 49, 6903(2010).
    [CrossRef]

2011 (1)

2010 (1)

2009 (2)

2007 (1)

2005 (1)

2003 (1)

2000 (1)

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, Opt. Commun. 175, 347 (2000).
[CrossRef]

1999 (1)

1994 (1)

1991 (1)

1971 (1)

Ando, T.

Arrizón, V.

Birch, P.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, Opt. Commun. 175, 347 (2000).
[CrossRef]

Budgett, D.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, Opt. Commun. 175, 347 (2000).
[CrossRef]

Campos, J.

Carrada, R.

Chatwin, C.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, Opt. Commun. 175, 347 (2000).
[CrossRef]

Cohn, R. W.

Cottrell, D. M.

Davis, J. A.

Farsari, M.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, Opt. Commun. 175, 347 (2000).
[CrossRef]

Fukuchi, N.

Gonzalez, L. A.

Hernández-Hernández, R. J.

Inoue, T.

Jones, A. L.

Kirk, J. P.

Liang, M.

Matsumoto, N.

Méndez, G.

Moreno, I.

Ohtake, Y.

Ricardez-Vargas, I.

Richardson, J.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, Opt. Commun. 175, 347 (2000).
[CrossRef]

Ruiz, U.

Sánchez-de-La-Llave, D.

Terborg, R. A.

Volke-Sepúlveda, K.

Wyrowski, F.

Young, R.

P. Birch, R. Young, C. Chatwin, M. Farsari, D. Budgett, and J. Richardson, Opt. Commun. 175, 347 (2000).
[CrossRef]

Yzuel, M. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Efficiencies η0 and ηL versus the number Q of interfering waves for p=0.

Fig. 2.
Fig. 2.

(a) Modulus and (b) phase of the numerically computed Fourier spectrum of the field w(r,θ) with parameters for Q=8 and p=0. Similar results for the corresponding kinoform Fourier spectrum are shown in (c) and (d), respectively.

Fig. 3.
Fig. 3.

(a) Modulus and (b) phase of the numerically computed Fourier spectrum of the field w(r,θ) with parameters for Q=5 and p=1. Similar results for the corresponding kinoform Fourier spectrum are shown in (c) and (d), respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η0=AΩ1Ω|f(x,y)|2dxdy,
h(x,y)=βf(x,y)+e(x,y),
Ωexp[iψ(x,y)]f*(x,y)dxdy=βη0AΩ+Ωe(x,y)f*(x,y)dxdy.
β=AΩ1η01Ω|f(x,y)|exp{i[ψ(x,y)ξ(x,y)]}dxdy.
βL=Ω|f(x,y)|dxdyΩ|f(x,y)|2dxdy.
w(r,θ)=Cn=0Q1exp(iθn)exp[i2πρ0rcos(θnΔθ)],
h(x)=m=1cmf(mx),
k[r,θ+n(2π/Q)]=exp[inp(2π/Q)]k(r,θ).
K[ρ,ϕ+n(2π/Q)]=exp[inp(2π/Q)]K(ρ,ϕ),

Metrics