Abstract

Optical fibers allow a variety of spectroscopic sensing methods to be implemented in a single-ended backscattering geometry. Taking multimode fibers with surface-enhanced Raman scattering active tips as a model system, it is shown that the remote single-ended collection geometry can be relatively inefficient in comparison to the performance of the underlying sensor structure. Therefore the performance of the single-ended geometry has been compared to the analogous sensor structure on a nonguiding silica glass substrate. While part of the reduction in collection efficiency can be attributed to mismatches between the numerical aperture of the collection optics and that of the fiber, this study suggests that there can be an additional loss due to a mismatch between the confocal area of the collection optics and the area of the fiber core. This effect is most significant for high numerical aperture objectives. However, the collection efficiency is somewhat higher than would be expected from a simple area ratio analysis. This can be attributed to the graded-index fiber used in the model system and the relaxation of confocal requirements in the longitudinal direction.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius J. Anal. Chem. 362, 349 (1998).
    [CrossRef]
  2. D. A. Stuart, K. B. Biggs, and R. P. Van Duyne, Analyst 131, 568 (2006).
    [CrossRef]
  3. D. L. Stokes and T. Vo-Dinh, Sens. Actuators B 69, 28 (2000).
    [CrossRef]
  4. P. R. Stoddart and D. J. White, Anal. Bioanal. Chem. 394, 1761 (2009).
    [CrossRef]
  5. S. Jayawardhana, G. Kostovski, A. P. Mazzolini, and P. R. Stoddart, Appl. Opt. 50, 155 (2011).
    [CrossRef]
  6. Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
    [CrossRef]
  7. C. Jennings, R. Aroca, A. M. Hor, and R. O. Loutfy, Anal. Chem. 56, 2033 (1984).
    [CrossRef]
  8. N. Everall, Spectroscopy 19, 22 (2004).
  9. C. B. Juang, L. Finzi, and C. J. Bustamante, Rev. Sci. Instrum. 59, 2399 (1988).
    [CrossRef]
  10. N. EverallAppl. Spectrosc. 62, 591 (2008)
    [CrossRef]
  11. T. E. Bridges, M. P. Houlne, and J. M. Harris, Anal. Chem. 76, 576 (2004).
    [CrossRef]

2011 (1)

2009 (1)

P. R. Stoddart and D. J. White, Anal. Bioanal. Chem. 394, 1761 (2009).
[CrossRef]

2008 (1)

2006 (2)

D. A. Stuart, K. B. Biggs, and R. P. Van Duyne, Analyst 131, 568 (2006).
[CrossRef]

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

2004 (2)

N. Everall, Spectroscopy 19, 22 (2004).

T. E. Bridges, M. P. Houlne, and J. M. Harris, Anal. Chem. 76, 576 (2004).
[CrossRef]

2000 (1)

D. L. Stokes and T. Vo-Dinh, Sens. Actuators B 69, 28 (2000).
[CrossRef]

1998 (1)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius J. Anal. Chem. 362, 349 (1998).
[CrossRef]

1988 (1)

C. B. Juang, L. Finzi, and C. J. Bustamante, Rev. Sci. Instrum. 59, 2399 (1988).
[CrossRef]

1984 (1)

C. Jennings, R. Aroca, A. M. Hor, and R. O. Loutfy, Anal. Chem. 56, 2033 (1984).
[CrossRef]

Aroca, R.

C. Jennings, R. Aroca, A. M. Hor, and R. O. Loutfy, Anal. Chem. 56, 2033 (1984).
[CrossRef]

Biggs, K. B.

D. A. Stuart, K. B. Biggs, and R. P. Van Duyne, Analyst 131, 568 (2006).
[CrossRef]

Bustamante, C. J.

C. B. Juang, L. Finzi, and C. J. Bustamante, Rev. Sci. Instrum. 59, 2399 (1988).
[CrossRef]

Dluhy, R. A.

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Everall, N.

N. EverallAppl. Spectrosc. 62, 591 (2008)
[CrossRef]

N. Everall, Spectroscopy 19, 22 (2004).

Fan, J. G.

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Finzi, L.

C. B. Juang, L. Finzi, and C. J. Bustamante, Rev. Sci. Instrum. 59, 2399 (1988).
[CrossRef]

Hieftje, G. M.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius J. Anal. Chem. 362, 349 (1998).
[CrossRef]

Hobbs, S. E.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius J. Anal. Chem. 362, 349 (1998).
[CrossRef]

Hor, A. M.

C. Jennings, R. Aroca, A. M. Hor, and R. O. Loutfy, Anal. Chem. 56, 2033 (1984).
[CrossRef]

Jayawardhana, S.

Jennings, C.

C. Jennings, R. Aroca, A. M. Hor, and R. O. Loutfy, Anal. Chem. 56, 2033 (1984).
[CrossRef]

Juang, C. B.

C. B. Juang, L. Finzi, and C. J. Bustamante, Rev. Sci. Instrum. 59, 2399 (1988).
[CrossRef]

Kostovski, G.

Liu, Y. J.

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Loutfy, R. O.

C. Jennings, R. Aroca, A. M. Hor, and R. O. Loutfy, Anal. Chem. 56, 2033 (1984).
[CrossRef]

Mazzolini, A. P.

Potyrailo, R. A.

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius J. Anal. Chem. 362, 349 (1998).
[CrossRef]

Shanmukh, S.

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Stoddart, P. R.

Stokes, D. L.

D. L. Stokes and T. Vo-Dinh, Sens. Actuators B 69, 28 (2000).
[CrossRef]

Stuart, D. A.

D. A. Stuart, K. B. Biggs, and R. P. Van Duyne, Analyst 131, 568 (2006).
[CrossRef]

Van Duyne, R. P.

D. A. Stuart, K. B. Biggs, and R. P. Van Duyne, Analyst 131, 568 (2006).
[CrossRef]

Vo-Dinh, T.

D. L. Stokes and T. Vo-Dinh, Sens. Actuators B 69, 28 (2000).
[CrossRef]

White, D. J.

P. R. Stoddart and D. J. White, Anal. Bioanal. Chem. 394, 1761 (2009).
[CrossRef]

Zhao, Y. P.

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Anal. Bioanal. Chem. (1)

P. R. Stoddart and D. J. White, Anal. Bioanal. Chem. 394, 1761 (2009).
[CrossRef]

Anal. Chem. (2)

C. Jennings, R. Aroca, A. M. Hor, and R. O. Loutfy, Anal. Chem. 56, 2033 (1984).
[CrossRef]

T. E. Bridges, M. P. Houlne, and J. M. Harris, Anal. Chem. 76, 576 (2004).
[CrossRef]

Analyst (1)

D. A. Stuart, K. B. Biggs, and R. P. Van Duyne, Analyst 131, 568 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Fresenius J. Anal. Chem. (1)

R. A. Potyrailo, S. E. Hobbs, and G. M. Hieftje, Fresenius J. Anal. Chem. 362, 349 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

C. B. Juang, L. Finzi, and C. J. Bustamante, Rev. Sci. Instrum. 59, 2399 (1988).
[CrossRef]

Sens. Actuators B (1)

D. L. Stokes and T. Vo-Dinh, Sens. Actuators B 69, 28 (2000).
[CrossRef]

Spectroscopy (1)

N. Everall, Spectroscopy 19, 22 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of (a) direct and (b) remote single-ended SERS measurement geometries. The hatched region represents the collection cone of the microscope objective, while the dark-shaded region shows the portion of the SERS signal that is captured by the objectives in each case.

Fig. 2.
Fig. 2.

Thiophenol SERS spectra taken from an OAD substrate with average island height of 31±5nm on an optical fiber tip. The four thiophenol peaks used to quantify the signal amplitude are shown by asterisks. The broad silica background from the optical fiber peaks at 430cm1 in the remote measurement. The spectra have been vertically offset for clarity.

Fig. 3.
Fig. 3.

Thiophenol SERS spectra taken from similar OAD substrates on a cover slip. Spectra are vertically offset for clarity.

Fig. 4.
Fig. 4.

Comparison of a silicon depth profile with profiles through the remote end of the optical fiber. Negative depth indicates focusing below the surface. The SERS peak intensity of thiophenol at 1000cm1 and the silica Raman background intensity at 430cm1 are plotted together with the height of the 520cm1 peak of silicon. Measurements were acquired using an integration time of five seconds and three averages.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

IfiberGΩfibdσdΩdΩ002π0ρf(r,θ,z)rdrdθdz,
IfiberGdσdΩΩfib002π0ρf(r,θ,z)rdrdθdz.
IGΩobjdσdΩdΩ=GdσdΩΩobj,
(II)fiber=GG(ΩfibΩobj)002π0ρf(r,θ,z)rdrdθdz.
E(z)=[1+(z/l)2]1,
002π0ρf(r,θ,z)rdrdθdz=ξ(ρa)20E(z)dz=0.17,

Metrics