Abstract

We propose a broadband infrared absorber by engineering the frequency dispersion of metamaterial surface (metasurface) to mimic an ideal absorbing sheet. With a thin layer of structured nichrome, a polarization-independent absorber with absorption larger than 97% is numerically demonstrated over a larger than one octave bandwidth. It is shown that the bandwidth enhancement is related with the transformation of the Drude model of free electron gas in metal film to the Lorentz oscillator model of a bound electron in the structured metallic surface. We believe that the concept of dispersion engineering may provide helpful guidance for the design of a broadband absorber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
    [CrossRef]
  2. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
    [CrossRef]
  3. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, Nat. Mater. 10, 216 (2011).
    [CrossRef]
  4. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef]
  5. T. K. M. Diem and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
    [CrossRef]
  6. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
    [CrossRef]
  7. Y. Q. Ye, Y. Jin, and S. He, J. Opt. Soc. Am. B 27, 498 (2010).
    [CrossRef]
  8. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).
    [CrossRef]
  9. C. Wu and G. Shvets, Opt. Lett. 37, 308 (2012).
    [CrossRef]
  10. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett. 36, 3476 (2011).
    [CrossRef]
  11. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, Opt. Lett. 37, 154 (2012).
    [CrossRef]
  12. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, Opt. Express 19, 20642 (2011).
    [CrossRef]
  13. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Opt. Express 19, 14260 (2011).
    [CrossRef]
  14. T. B. A. Senior, IEEE Trans. Antennas Propag. 29, 826 (1981).
    [CrossRef]
  15. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, Opt. Express 19, 17413 (2011).
    [CrossRef]
  16. G. Biener, A. Niv, V. Kleiner, and E. Hasman, Opt. Lett. 32, 994 (2007).
    [CrossRef]
  17. N. Engheta, Science 317, 1698 (2007).
    [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2012

2011

2010

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Y. Q. Ye, Y. Jin, and S. He, J. Opt. Soc. Am. B 27, 498 (2010).
[CrossRef]

2009

T. K. M. Diem and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

2008

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

2007

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef]

N. Engheta, Science 317, 1698 (2007).
[CrossRef]

G. Biener, A. Niv, V. Kleiner, and E. Hasman, Opt. Lett. 32, 994 (2007).
[CrossRef]

2006

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

1981

T. B. A. Senior, IEEE Trans. Antennas Propag. 29, 826 (1981).
[CrossRef]

Alici, K. B.

Biener, G.

Bossard, J. A.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, Nat. Mater. 10, 216 (2011).
[CrossRef]

Chen, H.-T.

Chowdhury, D. R.

Cumming, D. R. S.

Diem, T. K. M.

T. K. M. Diem and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Engheta, N.

N. Engheta, Science 317, 1698 (2007).
[CrossRef]

Feng, Q.

Grant, J.

Hasman, E.

He, S.

Hu, C.

Huang, C.

Huang, L.

Jin, Y.

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Khalid, A.

Kleiner, V.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef]

Lier, E.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, Nat. Mater. 10, 216 (2011).
[CrossRef]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef]

Luo, S.-N.

Luo, X.

Ma, Y.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Niv, A.

Ozbay, E.

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

Pu, M.

Ramani, S.

Reiten, M. T.

Saha, S.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Scarborough, C. P.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, Nat. Mater. 10, 216 (2011).
[CrossRef]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

Senior, T. B. A.

T. B. A. Senior, IEEE Trans. Antennas Propag. 29, 826 (1981).
[CrossRef]

Shvets, G.

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

Soukoulis, C. M.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef]

Taylor, A. J.

Turhan, A. B.

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Wang, C.

Wang, M.

Werner, D. H.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, Nat. Mater. 10, 216 (2011).
[CrossRef]

Wu, C.

Wu, Q.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, Nat. Mater. 10, 216 (2011).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef]

Ye, Y. Q.

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef]

Zhao, Z.

IEEE Trans. Antennas Propag.

T. B. A. Senior, IEEE Trans. Antennas Propag. 29, 826 (1981).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Mater.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, Nat. Mater. 10, 216 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

T. K. M. Diem and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
[CrossRef]

Phys. Rev. Lett.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Phys. Rev. Lett. 104, 207403 (2010).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Science

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef]

N. Engheta, Science 317, 1698 (2007).
[CrossRef]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Unit cell of the broadband absorber and its optimized dimensions: p=1.5, d=1.5, t=0.015, l=1.25, and w=0.8 in micrometers; (b) Absorption at normal incidence as a function of frequency. The absorption curves for Salisbury-screen-type absorbers are shown to illustrate the bandwidth enhancement effect. The thicknesses of the spacers are 1.5, 2, and 2.5 μm, respectively.

Fig. 2.
Fig. 2.

Retrieved sheet impedance and the corresponding impedance of an ideal absorbing sheet. The retrieved impedances overlap with the ideal one at 24.5 and 39.5 THz. Inset (a) is the side view of the E-field distribution at normal incidence, and inset (b) is the schematic of the E-field distribution in the metasurface.

Fig. 3.
Fig. 3.

Effective permittivity of the metasurface retrieved from the reflection coefficient and fitted by the Lorentz model. The permittivity described by the Drude model is also shown.

Fig. 4.
Fig. 4.

Absorption versus incidence angle for (a) and (b) s polarization, and (c) and (d) p polarization. The absorption for the equivalent absorber is shown in (b) and (d) for comparison.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

εeff=1+iσeffε0ω=1+iε0ωtZeff,
Zeff=Z01r1+rnexp(ink0d)+exp(ink0d)exp(ink0d)exp(ink0d),
εeff(ω)=1+ω12ω02ω2iωγ,

Metrics