Abstract

In this Letter, we propose an improved three-dimensional (3D) image reconstruction method for integral imaging. We use subpixel sensing of the optical rays of the 3D scene projected onto the image sensor. When reconstructing the 3D image, we use a calculated minimum subpixel distance for each sensor pixel instead of the average pixel value of integrated pixels from elemental images. The minimum subpixel distance is defined by measuring the distance between the center of the sensor pixel and the physical position of the imaging lens point spread function onto the sensor, which is projected from each reconstruction point for all elemental images. To show the usefulness of the proposed method, preliminary 3D imaging experiments are presented. Experimental results reveal that the proposed method may improve 3D imaging visualization because of the superior sensing and reconstruction of optical ray direction and intensity information for 3D objects.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Ives, J. Opt. Soc. Am. 21, 171 (1931).
    [CrossRef]
  2. C. B. Burckhardt, J. Opt. Soc. Am. 58, 71 (1968).
    [CrossRef]
  3. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, Appl. Opt. 43, 5806 (2004).
    [CrossRef]
  4. L. Yang, M. McCornick, and N. Davies, Appl. Opt. 27, 4529 (1988).
    [CrossRef]
  5. A. Castro, Y. Frauel, and B. Javidi, Opt. Express 15, 10266 (2007).
    [CrossRef]
  6. B. Javidi, F. Okano, and J.-Y. Son, Three-Dimensional Imaging, Visualization, and Display Technology (Springer, 2008).
  7. S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, J. Opt. Soc. Am. A 18, 1814 (2001).
    [CrossRef]
  8. H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
    [CrossRef]
  9. Y. Igarishi, H. Murata, and M. Ueda, Jpn. J. Appl. Phys. 17, 1683 (1978).
    [CrossRef]
  10. J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K-D. Kwack, IEEE J. Display Tech. 4, 324 (2008).
    [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

2008

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K-D. Kwack, IEEE J. Display Tech. 4, 324 (2008).
[CrossRef]

2007

2004

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, Appl. Opt. 43, 5806 (2004).
[CrossRef]

2001

1988

1978

Y. Igarishi, H. Murata, and M. Ueda, Jpn. J. Appl. Phys. 17, 1683 (1978).
[CrossRef]

1968

1931

Aggoun, A.

Burckhardt, C. B.

Castro, A.

Davies, N.

Dohi, T.

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
[CrossRef]

Frauel, Y.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Hata, N.

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
[CrossRef]

Igarishi, Y.

Y. Igarishi, H. Murata, and M. Ueda, Jpn. J. Appl. Phys. 17, 1683 (1978).
[CrossRef]

Ives, H. E.

Iwahara, M.

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
[CrossRef]

Javidi, B.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K-D. Kwack, IEEE J. Display Tech. 4, 324 (2008).
[CrossRef]

A. Castro, Y. Frauel, and B. Javidi, Opt. Express 15, 10266 (2007).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, Appl. Opt. 43, 5806 (2004).
[CrossRef]

B. Javidi, F. Okano, and J.-Y. Son, Three-Dimensional Imaging, Visualization, and Display Technology (Springer, 2008).

Kim, D.-S.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K-D. Kwack, IEEE J. Display Tech. 4, 324 (2008).
[CrossRef]

Kim, S.-H.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K-D. Kwack, IEEE J. Display Tech. 4, 324 (2008).
[CrossRef]

Kung, S. Y.

Kwack, K-D.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K-D. Kwack, IEEE J. Display Tech. 4, 324 (2008).
[CrossRef]

Liao, H.

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
[CrossRef]

Manolache, S.

Martínez-Corral, M.

Martínez-Cuenca, R.

McCormick, M.

McCornick, M.

Murata, H.

Y. Igarishi, H. Murata, and M. Ueda, Jpn. J. Appl. Phys. 17, 1683 (1978).
[CrossRef]

Nakajima, S.

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
[CrossRef]

Okano, F.

B. Javidi, F. Okano, and J.-Y. Son, Three-Dimensional Imaging, Visualization, and Display Technology (Springer, 2008).

Saavedra, G.

Sakuma, I.

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
[CrossRef]

Son, J.-Y.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K-D. Kwack, IEEE J. Display Tech. 4, 324 (2008).
[CrossRef]

B. Javidi, F. Okano, and J.-Y. Son, Three-Dimensional Imaging, Visualization, and Display Technology (Springer, 2008).

Ueda, M.

Y. Igarishi, H. Murata, and M. Ueda, Jpn. J. Appl. Phys. 17, 1683 (1978).
[CrossRef]

Yang, L.

Appl. Opt.

IEEE J. Display Tech.

J.-Y. Son, S.-H. Kim, D.-S. Kim, B. Javidi, and K-D. Kwack, IEEE J. Display Tech. 4, 324 (2008).
[CrossRef]

IEEE Trans. Inf. Technol. Biomed.

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, IEEE Trans. Inf. Technol. Biomed. 8, 114 (2004).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

Y. Igarishi, H. Murata, and M. Ueda, Jpn. J. Appl. Phys. 17, 1683 (1978).
[CrossRef]

Opt. Express

Other

B. Javidi, F. Okano, and J.-Y. Son, Three-Dimensional Imaging, Visualization, and Display Technology (Springer, 2008).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Pickup process (image recording) of integral imaging and (b) computational reconstruction based on a ray back-propagation algorithm.

Fig. 2.
Fig. 2.

(a) Relationship between object planes and ith image sensor, (b) recording of PSF when di=0, and (c) recording of PSF when di0. di is the distance between the pixel center and the lens PSF center. PSF, point spread function.

Fig. 3.
Fig. 3.

Ray diagram for geometric analysis of subpixel distance di.

Fig. 4.
Fig. 4.

Experimental structure to record elemental images.

Fig. 5.
Fig. 5.

Example of (a) the recorded elemental image with low resolution (396×264 pixels) and (b) the enlarged image.

Fig. 6.
Fig. 6.

Reconstructed image for the “car” object: (a) proposed reconstruction method and (b) conventional reconstruction method.

Fig. 7.
Fig. 7.

Reconstructed images for the “street sign” object: (a) proposed reconstruction method and (b) conventional reconstruction method.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(ui,vi)=(xpig(xxpi)z,ypig(yypi)z),
di=(uicmi)2+(vicni)2.
k˜=argmini[1,N](di).
R(x,y,z)=Ik˜(uk˜,vk˜).

Metrics