Abstract

A fiber optic integrated modulation-depth-tunable modulator based on a type of hollow optical fiber with suspended core is proposed and investigated. We synthesized magnetic fluid containing superparamagnetic Fe3O4 nanoparticles and encapsulated it in the hollow optical fiber as the cladding layer of the suspended core by fusing the hollow optical fiber with the multimode optical fibers. The light with a wavelength of 632.8 nm is coupled in and out of the modulating element by a tapering technique. Experimental results show that the light attenuation in the system can be greatly influenced by only 2.0×102μL of the magnetic fluid under different magnetic field strengths. The saturated modulation depth is 43% when the magnetic field strength is 489 Oe. The response time of the system is <120ms. Significantly, this work presents information for the development of all-fiber modulators, including other integrated electro-optic devices, such as optical switch, optical fiber filter, and magnetic sensors utilizing the special structure of this hollow optical fiber with suspended core and superparamagnetic magnetic fluid.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Takigawa, E. Higurashi, T. Suga, and T. Kawanishi, Opt. Express 19, 15739 (2011).
    [CrossRef]
  2. C. R. Doerr, N. Dupuis, and L. M. Zhang, Opt. Lett. 36, 4293 (2011).
    [CrossRef]
  3. O. Tarasenko and W. Margulis, Opt. Lett. 32, 1356 (2007).
    [CrossRef]
  4. A. N. Starodumov, L. A. Zenteno, N. Arzate, and P. Gavrilovic, Opt. Lett. 22, 286 (1997).
    [CrossRef]
  5. M. Rajabvand and F. Behnia, J. Lightwave Technol. 28, 141 (2010).
    [CrossRef]
  6. I. Moreno, J. A. Davis, T. M Hernandez, D. M. Cottrell, and David Sand, Opt. Express 20, 364 (2012).
    [CrossRef]
  7. Y. H. Qi, P. Desjardins, X. S. Meng, and Z. Y. Wang, Opt. Mater. (Amsterdam) 21, 255 (2002).
  8. R. C. Twu, H. Y. Hong, and H. H. Lee, Opt. Express 16, 4366 (2008).
    [CrossRef]
  9. F. Peng, J. Yang, X. L. Li, Y. G. Yuan, B. Wu, A. Zhou, and L. B. Yuan, Opt. Lett. 36, 2056 (2011).
    [CrossRef]
  10. X. H. Yang, L. Li, L. B. Yuan, S. Z. Li, S. Z. Luo, Y. X. Liu, and L. R. Peng, Opt. Lett. 36, 4656 (2011).
    [CrossRef]
  11. P. Childs, A. Candiani, and S. Pissadakis, Photonic Technol. Lett. 23, 929 (2009).
  12. A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, Opt. Lett. 36, 2548 (2011).
    [CrossRef]
  13. P. Zu, C. C. Chan, W. S. Lew, Y. X. Jin, Y. F. Zhang, H. F. Liew, L. H. Chen, W. C. Wong, and X. Y. Dong, Opt. Lett. 37, 398 (2012).
    [CrossRef]
  14. B. Dong, Y. M. Cui, H. Yang, L. X. Yu, W. Q. Jin, and S. H. Feng, Mater. Lett. 60, 2094 (2006).
    [CrossRef]

2012

2011

2010

2009

P. Childs, A. Candiani, and S. Pissadakis, Photonic Technol. Lett. 23, 929 (2009).

2008

2007

2006

B. Dong, Y. M. Cui, H. Yang, L. X. Yu, W. Q. Jin, and S. H. Feng, Mater. Lett. 60, 2094 (2006).
[CrossRef]

2002

Y. H. Qi, P. Desjardins, X. S. Meng, and Z. Y. Wang, Opt. Mater. (Amsterdam) 21, 255 (2002).

1997

Arzate, N.

Behnia, F.

Candiani, A.

A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, Opt. Lett. 36, 2548 (2011).
[CrossRef]

P. Childs, A. Candiani, and S. Pissadakis, Photonic Technol. Lett. 23, 929 (2009).

Chan, C. C.

Chen, L. H.

Childs, P.

P. Childs, A. Candiani, and S. Pissadakis, Photonic Technol. Lett. 23, 929 (2009).

Cottrell, D. M.

Cui, Y. M.

B. Dong, Y. M. Cui, H. Yang, L. X. Yu, W. Q. Jin, and S. H. Feng, Mater. Lett. 60, 2094 (2006).
[CrossRef]

Davis, J. A.

Desjardins, P.

Y. H. Qi, P. Desjardins, X. S. Meng, and Z. Y. Wang, Opt. Mater. (Amsterdam) 21, 255 (2002).

Doerr, C. R.

Dong, B.

B. Dong, Y. M. Cui, H. Yang, L. X. Yu, W. Q. Jin, and S. H. Feng, Mater. Lett. 60, 2094 (2006).
[CrossRef]

Dong, X. Y.

Dupuis, N.

Feng, S. H.

B. Dong, Y. M. Cui, H. Yang, L. X. Yu, W. Q. Jin, and S. H. Feng, Mater. Lett. 60, 2094 (2006).
[CrossRef]

Gavrilovic, P.

Hernandez, T. M

Higurashi, E.

Hong, H. Y.

Jin, W. Q.

B. Dong, Y. M. Cui, H. Yang, L. X. Yu, W. Q. Jin, and S. H. Feng, Mater. Lett. 60, 2094 (2006).
[CrossRef]

Jin, Y. X.

Kawanishi, T.

Konstantaki, M.

Lee, H. H.

Lew, W. S.

Li, L.

Li, S. Z.

Li, X. L.

Liew, H. F.

Liu, Y. X.

Luo, S. Z.

Margulis, W.

Meng, X. S.

Y. H. Qi, P. Desjardins, X. S. Meng, and Z. Y. Wang, Opt. Mater. (Amsterdam) 21, 255 (2002).

Moreno, I.

Peng, F.

Peng, L. R.

Pissadakis, S.

A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, Opt. Lett. 36, 2548 (2011).
[CrossRef]

P. Childs, A. Candiani, and S. Pissadakis, Photonic Technol. Lett. 23, 929 (2009).

Qi, Y. H.

Y. H. Qi, P. Desjardins, X. S. Meng, and Z. Y. Wang, Opt. Mater. (Amsterdam) 21, 255 (2002).

Rajabvand, M.

Sand, David

Starodumov, A. N.

Sterner, C.

Suga, T.

Takigawa, R.

Tarasenko, O.

Twu, R. C.

Wang, Z. Y.

Y. H. Qi, P. Desjardins, X. S. Meng, and Z. Y. Wang, Opt. Mater. (Amsterdam) 21, 255 (2002).

Wong, W. C.

Wu, B.

Yang, H.

B. Dong, Y. M. Cui, H. Yang, L. X. Yu, W. Q. Jin, and S. H. Feng, Mater. Lett. 60, 2094 (2006).
[CrossRef]

Yang, J.

Yang, X. H.

Yu, L. X.

B. Dong, Y. M. Cui, H. Yang, L. X. Yu, W. Q. Jin, and S. H. Feng, Mater. Lett. 60, 2094 (2006).
[CrossRef]

Yuan, L. B.

Yuan, Y. G.

Zenteno, L. A.

Zhang, L. M.

Zhang, Y. F.

Zhou, A.

Zu, P.

Supplementary Material (1)

» Media 1: AVI (615 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-section view of the hollow optical fiber with suspended core.

Fig. 2.
Fig. 2.

(a) Transmission electron microscope image of superparamagnetic Fe3O4 nanoparticles in the magnetic fluid (insert: x-ray defraction pattern). (b) Strong magnetic force between the prepared magnetic fluid and NdFeB magnet.

Fig. 3.
Fig. 3.

Experimental setup for optical fiber modulator based on hollow optical fiber with suspended core (Media 1).

Fig. 4.
Fig. 4.

Modulation properties of the hollow optical fiber with suspended core at different magnetic field strengths. (a) Changes of magnetic field strengths. (b) Changes of the optical intensities through the optical path system.

Fig. 5.
Fig. 5.

Dynamic response of the hollow optical fiber-based modulator. (a) Switching-on operation at different magnetic field strengths. (b) Switching off operation.

Metrics