Abstract

We design a photonic sphere-array nanoantenna (NA) exhibiting both strong directionality and wavelength selectivity. Although the geometric configuration of the photonic NA resembles a plasmonic Yagi–Uda NA, it has different working principles and, most importantly, reduces the inherent metallic loss from plasmonic elements. For any selected optical wavelength, a sharp Fano resonance by the reflector is tunable to overlap spectrally with a wider dipole resonance by the sphere-chain director, leading to high directionality. This Letter provides design principles for directional and selective photonic NAs, which are particularly useful for photon detection and spontaneous emission manipulation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Greffet, Science 308, 1561 (2005).
    [CrossRef]
  2. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
    [CrossRef]
  3. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef]
  4. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007).
    [CrossRef]
  5. X. X. Liu and A. Alù, Phys. Rev. B 82, 144305 (2010).
    [CrossRef]
  6. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Nat. Photon. 2, 234 (2008).
    [CrossRef]
  7. Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, Nat. Commun. 2, 283 (2011).
    [CrossRef]
  8. H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
    [CrossRef]
  9. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  10. Y. Zhao, N. Engheta, and A. Alù, J. Opt. Soc. Am. B 28, 1266 (2011).
    [CrossRef]
  11. A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, Opt. Express 18, 123 (2010).
    [CrossRef]
  12. J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
    [CrossRef]
  13. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, Opt. Express 16, 10858 (2008).
    [CrossRef]
  14. A. Ahmadi and H. Mosallaei, Opt. Lett. 35, 3706 (2010).
    [CrossRef]
  15. T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photon. 4, 312 (2010).
    [CrossRef]
  16. D. W. Mackowski, J. Opt. Soc. Am. A 11, 2851 (1994).
    [CrossRef]
  17. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications(Wiley-Interscience, 2000).
  18. W. C. Chew, Waves and Fields in Inhomogeneous Media (Wiley/IEEE, 1999).
  19. T. Pakizeh and M. Käll, Nano Lett. 9, 2343 (2009).
    [CrossRef]
  20. U. Fano, Phys. Rev. 124, 1866 (1961).
    [CrossRef]
  21. M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, Phys. Rev. Lett. 100, 043903(2008).
    [CrossRef]
  22. A. E. Miroshnichenko, Rev. Mod. Phys. 82, 2257 (2010).
    [CrossRef]
  23. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
    [CrossRef]

2011 (3)

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, Nat. Commun. 2, 283 (2011).
[CrossRef]

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
[CrossRef]

Y. Zhao, N. Engheta, and A. Alù, J. Opt. Soc. Am. B 28, 1266 (2011).
[CrossRef]

2010 (6)

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photon. 4, 312 (2010).
[CrossRef]

X. X. Liu and A. Alù, Phys. Rev. B 82, 144305 (2010).
[CrossRef]

A. E. Miroshnichenko, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, Opt. Express 18, 123 (2010).
[CrossRef]

A. Ahmadi and H. Mosallaei, Opt. Lett. 35, 3706 (2010).
[CrossRef]

2009 (1)

T. Pakizeh and M. Käll, Nano Lett. 9, 2343 (2009).
[CrossRef]

2008 (3)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Nat. Photon. 2, 234 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, Opt. Express 16, 10858 (2008).
[CrossRef]

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, Phys. Rev. Lett. 100, 043903(2008).
[CrossRef]

2007 (2)

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007).
[CrossRef]

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

2006 (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

2005 (2)

J. J. Greffet, Science 308, 1561 (2005).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef]

1994 (1)

1961 (1)

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Agio, M.

Ahmadi, A.

Alù, A.

Aouani, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
[CrossRef]

Brongersma, M. L.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, Nat. Commun. 2, 283 (2011).
[CrossRef]

Chew, W. C.

W. C. Chew, Waves and Fields in Inhomogeneous Media (Wiley/IEEE, 1999).

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Devaux, E.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
[CrossRef]

Ding, K. H.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications(Wiley-Interscience, 2000).

Ebbesen, T. W.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef]

Engheta, N.

Y. Zhao, N. Engheta, and A. Alù, J. Opt. Soc. Am. B 28, 1266 (2011).
[CrossRef]

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Fano, U.

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Flach, S.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, Phys. Rev. Lett. 100, 043903(2008).
[CrossRef]

Ghadarghadr, S.

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Gorbach, A. V.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, Phys. Rev. Lett. 100, 043903(2008).
[CrossRef]

Greffet, J. J.

J. J. Greffet, Science 308, 1561 (2005).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photon. 4, 312 (2010).
[CrossRef]

Huang, K. C. Y.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, Nat. Commun. 2, 283 (2011).
[CrossRef]

Jun, Y. C.

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, Nat. Commun. 2, 283 (2011).
[CrossRef]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photon. 4, 312 (2010).
[CrossRef]

Käll, M.

T. Pakizeh and M. Käll, Nano Lett. 9, 2343 (2009).
[CrossRef]

Kaminski, F.

Kivshar, Y. S.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, Phys. Rev. Lett. 100, 043903(2008).
[CrossRef]

Kong, J. A.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications(Wiley-Interscience, 2000).

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photon. 4, 312 (2010).
[CrossRef]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Li, J. J.

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Liu, X. X.

X. X. Liu and A. Alù, Phys. Rev. B 82, 144305 (2010).
[CrossRef]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Mackowski, D. W.

Mahboub, O.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
[CrossRef]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef]

Miroshnichenko, A. E.

A. E. Miroshnichenko, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, Phys. Rev. Lett. 100, 043903(2008).
[CrossRef]

Mosallaei, H.

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Pakizeh, T.

T. Pakizeh and M. Käll, Nano Lett. 9, 2343 (2009).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef]

Rigneault, H.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
[CrossRef]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Salandrino, A.

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, Opt. Lett. 32, 1623 (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Nat. Photon. 2, 234 (2008).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Nat. Photon. 2, 234 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, Opt. Express 16, 10858 (2008).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, Opt. Express 16, 10858 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Nat. Photon. 2, 234 (2008).
[CrossRef]

Tribelsky, M. I.

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, Phys. Rev. Lett. 100, 043903(2008).
[CrossRef]

Tsang, L.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications(Wiley-Interscience, 2000).

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, Opt. Express 16, 10858 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Nat. Photon. 2, 234 (2008).
[CrossRef]

Wenger, J.

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
[CrossRef]

Zhao, Y.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

H. Aouani, O. Mahboub, E. Devaux, H. Rigneault, T. W. Ebbesen, and J. Wenger, Nano Lett. 11, 2400 (2011).
[CrossRef]

T. Pakizeh and M. Käll, Nano Lett. 9, 2343 (2009).
[CrossRef]

Nat. Commun. (1)

Y. C. Jun, K. C. Y. Huang, and M. L. Brongersma, Nat. Commun. 2, 283 (2011).
[CrossRef]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
[CrossRef]

Nat. Photon. (2)

T. Kosako, Y. Kadoya, and H. F. Hofmann, Nat. Photon. 4, 312 (2010).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, Nat. Photon. 2, 234 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (1)

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Phys. Rev. B (2)

J. J. Li, A. Salandrino, and N. Engheta, Phys. Rev. B 76, 245403 (2007).
[CrossRef]

X. X. Liu and A. Alù, Phys. Rev. B 82, 144305 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

M. I. Tribelsky, S. Flach, A. E. Miroshnichenko, A. V. Gorbach, and Y. S. Kivshar, Phys. Rev. Lett. 100, 043903(2008).
[CrossRef]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, Rev. Mod. Phys. 82, 2257 (2010).
[CrossRef]

Science (2)

J. J. Greffet, Science 308, 1561 (2005).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005).
[CrossRef]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications(Wiley-Interscience, 2000).

W. C. Chew, Waves and Fields in Inhomogeneous Media (Wiley/IEEE, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic design for an optimized photonic sphere-array NA at the selected wavelength of 603 nm.

Fig. 2.
Fig. 2.

(a) Radiation pattern of the optimized photonic NA at a selected wavelength of 603 nm. (b) Forward scattering intensity (along the x direction) of the photonic NA as a function of the wavelength.

Fig. 3.
Fig. 3.

(a) Backward scattering intensity of a silicon nanosphere (with the radius of 107 nm) as a function of the wavelength. (b) Imaginary parts of the relative permittivities of the gold, silver, and silicon. (c) Tunable Fano resonance by varying the sphere radius. (d) Radiation patterns at the xoy plane after modifying the separation d between the dipole emitter and the center of the sphere. (e) Radiation patterns at the zox plane.

Fig. 4.
Fig. 4.

(a) Forward scattering intensity for three directors comprising one, five, and eight silicon nanospheres, respectively. The radius of each sphere is 70 nm. (b) Forward scattering intensity for the director (involving five silicon nanospheres) as a function of the periodicity of the sphere chain. (c) Forward scattering intensity of the director as a function of the sphere radius. (d) Radiation pattern of the director working at the dipole resonance peak (603 nm). (e) Radiation pattern of the director at off resonance (565 nm).

Metrics