Abstract

We propose a method of suppressing the relative intensity noise caused by polarization-dependent gain that is inherent to Raman polarizers (RPs). This method involves bit-synchronously scrambling the state of polarization of a pulse (bit) before the pulse enters the RP. The proposed solution works for RPs operating in a depleted regime and is compatible with multichannel configurations.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, Opt. Express 17, 947 (2009).
    [CrossRef]
  2. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, Opt. Lett. 35, 3970 (2010).
    [CrossRef]
  3. L. Ursini, M. Santagiustina, and L. Palmieri, IEEE Photon. Technol. Lett. 23, 254 (2011).
    [CrossRef]
  4. V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, J. Lightwave Technol. 29, 341 (2011).
    [CrossRef]
  5. F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, IEEE Photon. Technol. Lett. 23, 1457 (2011).
    [CrossRef]
  6. V. V. Kozlov and S. Wabnitz, IEEE Photon. Technol. Lett. 23, 1088 (2011).
    [CrossRef]
  7. S. Sergeyev, S. Popov, and A. T. Friberg, Opt. Express 16, 14380 (2008).
    [CrossRef]
  8. S. Sergeyev and S. Popov, IEEE J. Quantum Electron. 48, 56 (2012).
    [CrossRef]
  9. F. Heismann, D. A. Gray, B. H. Lee, and R. W. Smith, IEEE Photon. Technol. Lett. 6, 1156 (1994).
    [CrossRef]

2012 (1)

S. Sergeyev and S. Popov, IEEE J. Quantum Electron. 48, 56 (2012).
[CrossRef]

2011 (4)

L. Ursini, M. Santagiustina, and L. Palmieri, IEEE Photon. Technol. Lett. 23, 254 (2011).
[CrossRef]

V. V. Kozlov, J. Nuño, J. D. Ania-Castañón, and S. Wabnitz, J. Lightwave Technol. 29, 341 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, IEEE Photon. Technol. Lett. 23, 1457 (2011).
[CrossRef]

V. V. Kozlov and S. Wabnitz, IEEE Photon. Technol. Lett. 23, 1088 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (1)

1994 (1)

F. Heismann, D. A. Gray, B. H. Lee, and R. W. Smith, IEEE Photon. Technol. Lett. 6, 1156 (1994).
[CrossRef]

Ania-Castañón, J. D.

Chiarello, F.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, IEEE Photon. Technol. Lett. 23, 1457 (2011).
[CrossRef]

Cirigliano, M.

Ferrario, M.

Friberg, A. T.

Gray, D. A.

F. Heismann, D. A. Gray, B. H. Lee, and R. W. Smith, IEEE Photon. Technol. Lett. 6, 1156 (1994).
[CrossRef]

Heismann, F.

F. Heismann, D. A. Gray, B. H. Lee, and R. W. Smith, IEEE Photon. Technol. Lett. 6, 1156 (1994).
[CrossRef]

Kozlov, V. V.

Lee, B. H.

F. Heismann, D. A. Gray, B. H. Lee, and R. W. Smith, IEEE Photon. Technol. Lett. 6, 1156 (1994).
[CrossRef]

Marazzi, L.

Martelli, P.

Martinelli, M.

Nuño, J.

Palmieri, L.

L. Ursini, M. Santagiustina, and L. Palmieri, IEEE Photon. Technol. Lett. 23, 254 (2011).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, IEEE Photon. Technol. Lett. 23, 1457 (2011).
[CrossRef]

Popov, S.

S. Sergeyev and S. Popov, IEEE J. Quantum Electron. 48, 56 (2012).
[CrossRef]

S. Sergeyev, S. Popov, and A. T. Friberg, Opt. Express 16, 14380 (2008).
[CrossRef]

Santagiustina, M.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, IEEE Photon. Technol. Lett. 23, 1457 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, IEEE Photon. Technol. Lett. 23, 254 (2011).
[CrossRef]

Sergeyev, S.

S. Sergeyev and S. Popov, IEEE J. Quantum Electron. 48, 56 (2012).
[CrossRef]

S. Sergeyev, S. Popov, and A. T. Friberg, Opt. Express 16, 14380 (2008).
[CrossRef]

Smith, R. W.

F. Heismann, D. A. Gray, B. H. Lee, and R. W. Smith, IEEE Photon. Technol. Lett. 6, 1156 (1994).
[CrossRef]

Ursini, L.

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, IEEE Photon. Technol. Lett. 23, 1457 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, IEEE Photon. Technol. Lett. 23, 254 (2011).
[CrossRef]

Wabnitz, S.

IEEE J. Quantum Electron. (1)

S. Sergeyev and S. Popov, IEEE J. Quantum Electron. 48, 56 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

F. Heismann, D. A. Gray, B. H. Lee, and R. W. Smith, IEEE Photon. Technol. Lett. 6, 1156 (1994).
[CrossRef]

F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, IEEE Photon. Technol. Lett. 23, 1457 (2011).
[CrossRef]

V. V. Kozlov and S. Wabnitz, IEEE Photon. Technol. Lett. 23, 1088 (2011).
[CrossRef]

L. Ursini, M. Santagiustina, and L. Palmieri, IEEE Photon. Technol. Lett. 23, 254 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Pulse from a signal beam (a), (b) before and (c), (d) after the RP. (a) Input shape—Gaussian; (b) input shape under the action of the spectral filter (note that the spectral filter is not present in the scheme at the input, and this shape is solely shown to illustrate the action of the filter on the Gaussian pulse); (c) outcoming pulse shape immediately after the RP; (d) pulse after spectral filtering of the shape shown in (c). A sketch of the setup is shown at the bottom.

Fig. 2.
Fig. 2.

11-channel RP in three regimes: (a) CV(RMSD) and (b) average output signal peak power of “one” bits, both versus channel number. Undepleted regime with no walk-off (black squares), depleted regime with no walk-off (red circles), and depleted regime with walk-off (green triangles). Parameters are γ=1(W·km)1; g=0.6(W·km)1; α=0.2dB/km; P=8W; input signal power, 1mW(10mW) in the undepleted (depleted) regime; fiber length, L=1.5km; N=11; λ(s)=1.55μm; λ(p)=1.45μm; the pulse shape is Gaussian with FWHM=8.33ps; duty cycle 0.33; bit slot 25 ps; [v(s)]j1=[v(p)]1+Δβj, j=1,,11, with Δβ=0 for no walk-off regime, Δβ=2.4ps/km for regime with walk-off. The spectral filter is modeled as exp[(1/2)ω2Tf2] with Tf=2.1ps.All points are obtained with prescrambling.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(zvi(s)t)Si(s)=γ¯Si(s)×(S(p)+j=1,iNSj(s))+(g/2)(S0(p)Si(s)+S0i(s)S(p))αSi(s),
(zv(p)t)S(p)=γ¯S(p)×j=1NSj(s)+(g/2)j=1Nϵj(p)(S0(p)Sj(s)+S(p)S0j(s))αS(p),
S1(s)=S0(s)(t,0)sin[ϕ1+ω(t)]cos[ϕ2+ω(t)],
S2(s)=S0(s)(t,0)sin[ϕ1+ω(t)]sin[ϕ2+ω(t)],
S3(s)=S0(s)(t,0)cos[ϕ1+ω(t)].

Metrics