Abstract

The laser measurement technique based on the ratio between the laser induced fluorescence (LIF) and the scattered light (Mie) intensities of droplets is presently limited to the evaluation of the Sauter mean diameter of the droplets. The important measurement of the droplet size spread is currently missing. An extension of the LIF/Mie technique for the measurement of droplet size spread is proposed here and is evaluated numerically. The method is based on the imperfect relationships between the scattered light intensity and the droplet surface area or the fluorescent light intensity and the droplet volume, which convey additional information that can be used to evaluate the droplet size spread.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).
  2. T. Kamimoto, in COMODIA 94 (1994), pp. 33-41.
  3. C. N. Yeh, H. Kosaka, and T. Kamimoto, in 3rd Congress on Optical Particle Sizing (1993), pp. 355-361.
  4. G. Charalampous and Y. Hardalupas, Appl. Opt. 50, 3622 (2011).
    [CrossRef]
  5. E. Kristensson, L. Araneo, E. Berrocal, J. Manin, M. Richter, M. Alden, and M. Linne, Opt. Express 19, 13647 (2011).
    [CrossRef]
  6. P. Le Gal, N. Farrugia, and D. A. Greenhalgh, Opt. Laser Technol. 31, 75 (1999).
    [CrossRef]
  7. R. Domann and Y. Hardalupas, Part. Part. Syst. Charact. 18, 3 (2001).
    [CrossRef]
  8. G. Charalampous and Y. Hardalupas, Appl. Opt. 50, 1197 (2011).
    [CrossRef]
  9. B. Frackowiak and C. Tropea, Appl. Opt. 49, 2363 (2010).
    [CrossRef]

2011

2010

2001

R. Domann and Y. Hardalupas, Part. Part. Syst. Charact. 18, 3 (2001).
[CrossRef]

1999

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, Opt. Laser Technol. 31, 75 (1999).
[CrossRef]

Alden, M.

Araneo, L.

Berrocal, E.

Charalampous, G.

Domann, R.

R. Domann and Y. Hardalupas, Part. Part. Syst. Charact. 18, 3 (2001).
[CrossRef]

Farrugia, N.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, Opt. Laser Technol. 31, 75 (1999).
[CrossRef]

Frackowiak, B.

Greenhalgh, D. A.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, Opt. Laser Technol. 31, 75 (1999).
[CrossRef]

Hardalupas, Y.

Kamimoto, T.

C. N. Yeh, H. Kosaka, and T. Kamimoto, in 3rd Congress on Optical Particle Sizing (1993), pp. 355-361.

T. Kamimoto, in COMODIA 94 (1994), pp. 33-41.

Kosaka, H.

C. N. Yeh, H. Kosaka, and T. Kamimoto, in 3rd Congress on Optical Particle Sizing (1993), pp. 355-361.

Kristensson, E.

Le Gal, P.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, Opt. Laser Technol. 31, 75 (1999).
[CrossRef]

Lefebvre, A. H.

A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).

Linne, M.

Manin, J.

Richter, M.

Tropea, C.

Yeh, C. N.

C. N. Yeh, H. Kosaka, and T. Kamimoto, in 3rd Congress on Optical Particle Sizing (1993), pp. 355-361.

Appl. Opt.

Opt. Express

Opt. Laser Technol.

P. Le Gal, N. Farrugia, and D. A. Greenhalgh, Opt. Laser Technol. 31, 75 (1999).
[CrossRef]

Part. Part. Syst. Charact.

R. Domann and Y. Hardalupas, Part. Part. Syst. Charact. 18, 3 (2001).
[CrossRef]

Other

A. H. Lefebvre, Atomization and Sprays (Hemisphere, 1989).

T. Kamimoto, in COMODIA 94 (1994), pp. 33-41.

C. N. Yeh, H. Kosaka, and T. Kamimoto, in 3rd Congress on Optical Particle Sizing (1993), pp. 355-361.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Relationship between the size spread Δ of the measured droplets and the spread parameter Pv. The slope of the relationship decreases with decreasing bs and bf and for greater droplet size spreads.

Fig. 2.
Fig. 2.

Range of uncertainty of droplet size spread measurement. On the left figure, SMD is resolved within 10 percent of its real value and on the right figure within 5 percent.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ=D0.9D0.1D0.5,
D=0If(D)·dN(D)D=0Is(D)·dN(D)=KD=0D3dN(D)D=0D2dN(D)=K·SMD,
If(D)Dbf,Is(D)Dbs,
K·SMDbfbs·Γ(11q)bfΓ(1+bf3q)Γ(11q)bsΓ(1+bs3q).
Δ=3.3221/q0.1521/q.

Metrics