Abstract

This Letter presents the τ interferometer, a portable and inexpensive device for obtaining spatial interferograms of microscopic biological samples without the strict stability and the highly coherent illumination that are usually required for interferometric microscopy setups. The device is built using off-the-shelf optical elements and can easily operate with low-coherence illumination, while being positioned in the output of a conventional inverted microscope. The interferograms are processed into the quantitative amplitude and phase profiles of the sample. Based on the phase profile, the optical-path-delay profile is obtained with temporal stability of 0.18 nm and spatial stability of 0.42 nm. Further experimental demonstration of using the τ interferometer for imaging the quantitative thickness profile of a live red blood cell is provided.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, J. Biomed. Opt. 15, 010505 (2010).
    [CrossRef]
  2. N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, Biomed. Opt. Express 1, 706 (2010).
    [CrossRef]
  3. N. T. Shaked, L. L. Satterwhite, G. A. Truskey, M. J. Telen, and A. Wax, J. Biomed. Opt. 16, 030506 (2011).
    [CrossRef]
  4. N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, J. Biomed. Opt. 15, 030503 (2010).
    [CrossRef]
  5. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, Opt. Lett. 31, 775 (2006).
    [CrossRef]
  6. H. Ding and G. Popescu, Opt. Express 18, 1569 (2010).
    [CrossRef]
  7. J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, Opt. Lett. 35, 514 (2010).
    [CrossRef]
  8. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, J. Biomed. Opt. 16, 026014 (2011).
    [CrossRef]
  9. G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, Opt. Lett. 35, 3390 (2010).
    [CrossRef]
  10. V. Mico, Z. Zalevsky, and J. Garcia, Opt. Commun. 281, 4273 (2008).
    [CrossRef]
  11. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, Opt. Express 17, 13080 (2009).
    [CrossRef]
  12. X. Cui, J. Ren, G. Tearney, and C. Yang, Opt. Express 18, 16685 (2010).
    [CrossRef]
  13. M. Lee, O. Yaglidere, and A. Ozcan, Biomed. Opt. Express 2, 2721 (2011).
    [CrossRef]
  14. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, Opt. Express 19, 24005 (2011).
    [CrossRef]
  15. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, and N. Aspert, Opt. Express 14, 4300 (2006).
    [CrossRef]

2011 (4)

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

N. T. Shaked, L. L. Satterwhite, G. A. Truskey, M. J. Telen, and A. Wax, J. Biomed. Opt. 16, 030506 (2011).
[CrossRef]

M. Lee, O. Yaglidere, and A. Ozcan, Biomed. Opt. Express 2, 2721 (2011).
[CrossRef]

Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, Opt. Express 19, 24005 (2011).
[CrossRef]

2010 (7)

2009 (1)

2008 (1)

V. Mico, Z. Zalevsky, and J. Garcia, Opt. Commun. 281, 4273 (2008).
[CrossRef]

2006 (2)

Aspert, N.

Badie, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

Bae, C. Y.

Balduzzi, D.

Bon, P.

Bursac, N.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, Biomed. Opt. Express 1, 706 (2010).
[CrossRef]

Charrière, F.

Colomb, T.

Coppola, G.

Cui, X.

Dasari, R. R.

Depeursinge, C.

Di Caprio, G.

Ding, H.

Emery, Y.

Feld, M. S.

Ferraro, P.

Finan, J. D.

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, J. Biomed. Opt. 15, 010505 (2010).
[CrossRef]

Finizio, A.

Galli, A.

Garcia, J.

V. Mico, Z. Zalevsky, and J. Garcia, Opt. Commun. 281, 4273 (2008).
[CrossRef]

Gioffré, M.

Grilli, S.

Guilak, F.

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, J. Biomed. Opt. 15, 010505 (2010).
[CrossRef]

Ikeda, T.

Jang, J.

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

Kühn, J.

Lee, M.

Marquet, P.

Maucort, G.

Miccio, L.

Mico, V.

V. Mico, Z. Zalevsky, and J. Garcia, Opt. Commun. 281, 4273 (2008).
[CrossRef]

Monemhaghdoust, Z.

Monneret, S.

Montfort, F.

Moser, C.

Ozcan, A.

Park, J.-K.

Paturzo, M.

Popescu, G.

Puglisi, R.

Ren, J.

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

Satterwhite, L. L.

N. T. Shaked, L. L. Satterwhite, G. A. Truskey, M. J. Telen, and A. Wax, J. Biomed. Opt. 16, 030506 (2011).
[CrossRef]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, Biomed. Opt. Express 1, 706 (2010).
[CrossRef]

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

Shaked, N. T.

N. T. Shaked, L. L. Satterwhite, G. A. Truskey, M. J. Telen, and A. Wax, J. Biomed. Opt. 16, 030506 (2011).
[CrossRef]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, Biomed. Opt. Express 1, 706 (2010).
[CrossRef]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, J. Biomed. Opt. 15, 010505 (2010).
[CrossRef]

Tearney, G.

Telen, M. J.

N. T. Shaked, L. L. Satterwhite, G. A. Truskey, M. J. Telen, and A. Wax, J. Biomed. Opt. 16, 030506 (2011).
[CrossRef]

Truskey, G. A.

N. T. Shaked, L. L. Satterwhite, G. A. Truskey, M. J. Telen, and A. Wax, J. Biomed. Opt. 16, 030506 (2011).
[CrossRef]

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

von Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

Wattellier, B.

Wax, A.

N. T. Shaked, L. L. Satterwhite, G. A. Truskey, M. J. Telen, and A. Wax, J. Biomed. Opt. 16, 030506 (2011).
[CrossRef]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

N. T. Shaked, L. L. Satterwhite, N. Bursac, and A. Wax, Biomed. Opt. Express 1, 706 (2010).
[CrossRef]

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, J. Biomed. Opt. 15, 010505 (2010).
[CrossRef]

Yaglidere, O.

Yang, C.

Ye, J. C.

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. Garcia, Opt. Commun. 281, 4273 (2008).
[CrossRef]

Zhu, Y.

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

Biomed. Opt. Express (2)

J. Biomed. Opt. (4)

N. T. Shaked, J. D. Finan, F. Guilak, and A. Wax, J. Biomed. Opt. 15, 010505 (2010).
[CrossRef]

N. T. Shaked, L. L. Satterwhite, G. A. Truskey, M. J. Telen, and A. Wax, J. Biomed. Opt. 16, 030506 (2011).
[CrossRef]

N. T. Shaked, Y. Zhu, N. Badie, N. Bursac, and A. Wax, J. Biomed. Opt. 15, 030503 (2010).
[CrossRef]

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, J. Biomed. Opt. 16, 026014 (2011).
[CrossRef]

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. Garcia, Opt. Commun. 281, 4273 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

The τ interferometer ported into the output of an inverted microscope. The interference is created by splitting the magnified image from the inverted microscope and effectively erasing the information from one of the beams before combining the beams again. S, sample; MO, microscope objective; L0, L1, L2, spherical lenses; BS, beam splitter; M0, M1, M2, mirrors; P, pinhole (confocally positioned). Inset: expanded figure for the reference-beam mirror M2.

Fig. 2.
Fig. 2.

Temporal stability of the optical-path delay of a diffraction-limited spot for a Michelson interferometer using a highly coherent source (dotted curve), τ interferometer using a highly coherent source (dashed curve), and τ interferometer using a partially coherent source (solid curve).

Fig. 3.
Fig. 3.

Quantitative thickness profile of a red blood cell acquired with the τ interferometer in a single camera exposure. Color bar represents thickness in µm. Left inset: interferogram of the cell. Right inset: cross section across the diagonal of the phase profile of the cell.

Metrics