Abstract

We report on highly enhanced and controlled light outcoupling of bidirectional organic light-emitting diodes by introduction of an enhanced microcavity structure as well as an organic capping layer (OC). Combining both OC and microcavity, we find that the overall external quantum, as well as current efficiency (CE), can be greatly enhanced. Especially, the CE with an appropriate thickness of OC is almost 1.75 times larger than that of the reference device without OC. Furthermore, we also analyze our devices with a numerical optical model calculating the flux of outcoupled photons, and compare theoretical predictions with our experimental results.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Increased and balanced light emission of transparent organic light-emitting diodes by enhanced microcavity effects

Jonghee Lee, Simone Hofmann, Michael Thomschke, Mauro Furno, Yong Hyun Kim, Björn Lüssem, and Karl Leo
Opt. Lett. 36(15) 2931-2933 (2011)

Influence of organic capping layers on the performance of transparent organic light-emitting diodes

Jonghee Lee, Simone Hofmann, Mauro Furno, Michael Thomschke, Yong Hyun Kim, Björn Lüssem, and Karl Leo
Opt. Lett. 36(8) 1443-1445 (2011)

Top-emitting organic light-emitting diodes

Simone Hofmann, Michael Thomschke, Björn Lüssem, and Karl Leo
Opt. Express 19(S6) A1250-A1264 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription