Abstract

We propose a novel and practical method to exactly measure the transient reflectance spectra (TRS) of the adaptive filters based on dynamic population gratings. The modulating signals applied to the laser source play an important role. We specially designed a train of triangular amplitude modulated pulses with a small duty to modulate the laser frequency, and then the TRS was obtained from the grating responses to this pulse train. The measured half-zero-point bandwidths of the filter with and without 2.6  m cavity length are 20 and 60 MHz, respectively. Our research also indicates that the relatively high input power and a short cavity length may enhance the antiperturbation ability of lasers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Frisken, Opt. Lett. 17, 1776 (1992).
    [CrossRef]
  2. B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Electron. Lett. 29, 1858 (1993).
    [CrossRef]
  3. B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Opt. Lett. 18, 2108 (1993).
    [CrossRef]
  4. M. D. Feuer, IEEE Photon. Technol. Lett. 10, 1587 (1998).
    [CrossRef]
  5. S. A. Havstad, B. Fischer, A. E. Willner, and M. G. Wickham, Opt. Lett. 24, 1466 (1999).
    [CrossRef]
  6. X. Y. Fan, Z. Y. He, Y. Mizuno, and K. Hotate, Opt. Express 13, 5756 (2005).
    [CrossRef]
  7. M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, Opt. Lett. 19, 1406 (1994).
    [CrossRef]
  8. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, Opt. Lett. 20, 875 (1995).
    [CrossRef]
  9. Z. Meng, G. Stewart, and G. Whitenett, J. Lightwave Technol. 24, 2179 (2006).
    [CrossRef]
  10. M. Horowitz, R. Daisy, and B. Fischer, Opt. Lett. 21, 299 (1996).
    [CrossRef]
  11. S. Stepanov, E. Hernández, and M. Plata, Opt. Lett. 29, 1327 (2004).
    [CrossRef]
  12. S. Stepanov and F. P. Cota, Opt. Lett. 32, 2532 (2007).
    [CrossRef]
  13. X. Y. Fan, Z. Y. He, and K. Hotate, Opt. Lett. 33, 1647(2008).
    [CrossRef]
  14. X. Y. Fan, Z. Y. He, and K. Hotate, Opt. Express 14, 556 (2006).
    [CrossRef]
  15. Y. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, IEEE J. Quantum Electron. 41, 1176 (2005).
    [CrossRef]
  16. S. Stepanov and M. P. Sánchez, Phys. Rev. A 80, 53830 (2009).
    [CrossRef]
  17. S. Melle, O. G. Calderón, Z. C. Zhuo, M. A. Antón, and F. Carreño, J. Opt. Soc. Am. B 28, 1631 (2011).
    [CrossRef]
  18. K. Iiyama, K. Hayashi, Y. Ida, H. Ikeda, and Y. Sakai, J. Lightwave Technol. 9, 635 (1991).
    [CrossRef]

2011

2009

S. Stepanov and M. P. Sánchez, Phys. Rev. A 80, 53830 (2009).
[CrossRef]

2008

2007

2006

2005

X. Y. Fan, Z. Y. He, Y. Mizuno, and K. Hotate, Opt. Express 13, 5756 (2005).
[CrossRef]

Y. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, IEEE J. Quantum Electron. 41, 1176 (2005).
[CrossRef]

2004

1999

1998

M. D. Feuer, IEEE Photon. Technol. Lett. 10, 1587 (1998).
[CrossRef]

1996

1995

1994

1993

B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Opt. Lett. 18, 2108 (1993).
[CrossRef]

B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Electron. Lett. 29, 1858 (1993).
[CrossRef]

1992

1991

K. Iiyama, K. Hayashi, Y. Ida, H. Ikeda, and Y. Sakai, J. Lightwave Technol. 9, 635 (1991).
[CrossRef]

Andrés, M. V.

Y. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, IEEE J. Quantum Electron. 41, 1176 (2005).
[CrossRef]

Antón, M. A.

Barmenkov, Y. O.

Y. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, IEEE J. Quantum Electron. 41, 1176 (2005).
[CrossRef]

Calderón, O. G.

Carreño, F.

Cheng, Y.

Cota, F. P.

Daisy, R.

DiGiovanni, D. J.

B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Opt. Lett. 18, 2108 (1993).
[CrossRef]

B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Electron. Lett. 29, 1858 (1993).
[CrossRef]

Fan, X. Y.

Feuer, M. D.

M. D. Feuer, IEEE Photon. Technol. Lett. 10, 1587 (1998).
[CrossRef]

Fischer, B.

Frisken, S. J.

Havstad, S. A.

Hayashi, K.

K. Iiyama, K. Hayashi, Y. Ida, H. Ikeda, and Y. Sakai, J. Lightwave Technol. 9, 635 (1991).
[CrossRef]

He, Z. Y.

Hernández, E.

Horowitz, M.

Hotate, K.

Ida, Y.

K. Iiyama, K. Hayashi, Y. Ida, H. Ikeda, and Y. Sakai, J. Lightwave Technol. 9, 635 (1991).
[CrossRef]

Iiyama, K.

K. Iiyama, K. Hayashi, Y. Ida, H. Ikeda, and Y. Sakai, J. Lightwave Technol. 9, 635 (1991).
[CrossRef]

Ikeda, H.

K. Iiyama, K. Hayashi, Y. Ida, H. Ikeda, and Y. Sakai, J. Lightwave Technol. 9, 635 (1991).
[CrossRef]

Kir’yanov, A. V.

Y. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, IEEE J. Quantum Electron. 41, 1176 (2005).
[CrossRef]

Kringlebotn, J. T.

Laming, R. I.

Loh, W. H.

Melle, S.

Meng, Z.

Mizuno, Y.

Payne, D. N.

Plata, M.

Sakai, Y.

K. Iiyama, K. Hayashi, Y. Ida, H. Ikeda, and Y. Sakai, J. Lightwave Technol. 9, 635 (1991).
[CrossRef]

Sánchez, M. P.

S. Stepanov and M. P. Sánchez, Phys. Rev. A 80, 53830 (2009).
[CrossRef]

Stepanov, S.

Stewart, G.

Sulhoff, J. W.

B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Opt. Lett. 18, 2108 (1993).
[CrossRef]

B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Electron. Lett. 29, 1858 (1993).
[CrossRef]

Whitenett, G.

Wickham, M. G.

Willner, A. E.

Zhuo, Z. C.

Zyskind, J. L.

Electron. Lett.

B. Fischer, J. L. Zyskind, J. W. Sulhoff, and D. J. DiGiovanni, Electron. Lett. 29, 1858 (1993).
[CrossRef]

IEEE J. Quantum Electron.

Y. O. Barmenkov, A. V. Kir’yanov, and M. V. Andrés, IEEE J. Quantum Electron. 41, 1176 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

M. D. Feuer, IEEE Photon. Technol. Lett. 10, 1587 (1998).
[CrossRef]

J. Lightwave Technol.

Z. Meng, G. Stewart, and G. Whitenett, J. Lightwave Technol. 24, 2179 (2006).
[CrossRef]

K. Iiyama, K. Hayashi, Y. Ida, H. Ikeda, and Y. Sakai, J. Lightwave Technol. 9, 635 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. A

S. Stepanov and M. P. Sánchez, Phys. Rev. A 80, 53830 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup: SLMLD, single-longitudinal-mode laser diode; PM, polarization-maintained; EDFA, erbium-doped fiber amplifier; OC, optical coupler; PMC, polarization-maintained circulator; PD, photodiode; AD, analog/digital convector. Inset, principle of an adaptive filter.

Fig. 2.
Fig. 2.

Input and normalized output optical signals of the DPG. Upper part: input optical signal; lower part: normalized output signal that is divided by the input one. (a), (b) Zooms of the waveform in which the correct reflectivity is located.

Fig. 3.
Fig. 3.

Measured TRSs of the adaptive interferometer with (a) 2.6 and (b) 0.04 m cavity length, respectively.

Metrics