Abstract

We experimentally investigate the coherence of a single mode InAlGaAs/InP cylindrical microlaser with two output waveguides. For a cylindrical microlaser with a radius of 15 μm and two 2 μm-wide output waveguides, single mode operation with a side mode suppression ratio of 30 dB is realized, and a far-field interferometric pattern similar to a Young’s interferometer is observed. The results indicate that the microlasers with two output waveguides can be used as the light source for an optical sensor by monitoring the phase change of the output emission from one port versus that of the other port.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Wang and R. K. Wang, Opt. Lett. 36, 2143 (2011).
    [CrossRef]
  2. S. C. Zhong, H. Shen, and Y. C. Shen, Opt. Lasers Eng. 49, 127 (2011).
    [CrossRef]
  3. G. Gervinskas, D. Day, and S. Juodkazis, Sens. Actuat. B 159, 39 (2011).
    [CrossRef]
  4. K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
    [CrossRef]
  5. B. Redding, M. A. Choma, and H. Cao, Opt. Lett. 36, 3404 (2011).
    [CrossRef]
  6. E. Lamothe, L. D. Lundeberg, and E. Kapon, Opt. Lett. 36, 2916 (2011).
    [CrossRef]
  7. G. P. Lousberg, L. D. A. Lundeberg, D. L. Boiko, and E. Kapon, Opt. Lett. 31, 990 (2006).
    [CrossRef]
  8. J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
    [CrossRef]
  9. Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
    [CrossRef]

2011 (7)

S. C. Zhong, H. Shen, and Y. C. Shen, Opt. Lasers Eng. 49, 127 (2011).
[CrossRef]

G. Gervinskas, D. Day, and S. Juodkazis, Sens. Actuat. B 159, 39 (2011).
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
[CrossRef]

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Y. Wang and R. K. Wang, Opt. Lett. 36, 2143 (2011).
[CrossRef]

E. Lamothe, L. D. Lundeberg, and E. Kapon, Opt. Lett. 36, 2916 (2011).
[CrossRef]

B. Redding, M. A. Choma, and H. Cao, Opt. Lett. 36, 3404 (2011).
[CrossRef]

2010 (1)

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

2006 (1)

Boiko, D. L.

Cao, H.

Che, K. J.

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

Choma, M. A.

Day, D.

G. Gervinskas, D. Day, and S. Juodkazis, Sens. Actuat. B 159, 39 (2011).
[CrossRef]

Du, Y.

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

Fan, X. D.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
[CrossRef]

Gervinskas, G.

G. Gervinskas, D. Day, and S. Juodkazis, Sens. Actuat. B 159, 39 (2011).
[CrossRef]

Guo, Y.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
[CrossRef]

Huang, Y. Z.

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

Juodkazis, S.

G. Gervinskas, D. Day, and S. Juodkazis, Sens. Actuat. B 159, 39 (2011).
[CrossRef]

Kapon, E.

Lamothe, E.

Lee, W.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
[CrossRef]

Lin, J. D.

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

Liu, J.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
[CrossRef]

Lousberg, G. P.

Lundeberg, L. D.

Lundeberg, L. D. A.

Lv, X. M.

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Oo, M. K. K.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
[CrossRef]

Redding, B.

Reddy, K.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
[CrossRef]

Shen, H.

S. C. Zhong, H. Shen, and Y. C. Shen, Opt. Lasers Eng. 49, 127 (2011).
[CrossRef]

Shen, Y. C.

S. C. Zhong, H. Shen, and Y. C. Shen, Opt. Lasers Eng. 49, 127 (2011).
[CrossRef]

Wang, R. K.

Wang, S. J.

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

Wang, Y.

Xiao, J. L.

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

Yang, Y. D.

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

Yao, Q. F.

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Zhong, S. C.

S. C. Zhong, H. Shen, and Y. C. Shen, Opt. Lasers Eng. 49, 127 (2011).
[CrossRef]

Electron. Lett. (1)

J. D. Lin, Y. Z. Huang, Q. F. Yao, X. M. Lv, Y. D. Yang, J. L. Xiao, and Y. Du, Electron. Lett. 47, 929 (2011).
[CrossRef]

Opt. Lasers Eng. (1)

S. C. Zhong, H. Shen, and Y. C. Shen, Opt. Lasers Eng. 49, 127 (2011).
[CrossRef]

Opt. Lett. (4)

Semicond. Sci. Technol. (1)

Y. Z. Huang, S. J. Wang, Y. D. Yang, J. D. Lin, K. J. Che, J. L. Xiao, and Y. Du, Semicond. Sci. Technol. 25, 105005 (2010).
[CrossRef]

Sens. Actuat B (1)

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. K. Oo, and X. D. Fan, Sens. Actuat B 159, 60 (2011).
[CrossRef]

Sens. Actuat. B (1)

G. Gervinskas, D. Day, and S. Juodkazis, Sens. Actuat. B 159, 39 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Output power coupled into the optical fiber for Port A and Port B, and the total output power measured by an integrating sphere for a cylindrical microlaser having a radius of 15 μm and two 2 μm-wide output waveguides at room temperature. The inset is the microscope image of a cylindrical microlaser.

Fig. 2.
Fig. 2.

Lasing spectra of the cylindrical microlaser at room temperature with an injection current of 50 mA. The inset is the detail spectrum for Port A at 30 mA.

Fig. 3.
Fig. 3.

Schematic diagram for measuring the far-field pattern of a cylindrical microlaser with Port A and Port B.

Fig. 4.
Fig. 4.

Normalized far-field patterns (a) of the cylindrical microlaser with two output waveguides at the injection currents of 20, 40, and 50 mA, and (b) from Port A and Port B at 50 mA, respectively.

Fig. 5.
Fig. 5.

Magnetic field pattern for TE mode at the mode wavelength of 1559.8 nm. The output field amplitude in the right side is magnified ten times.

Fig. 6.
Fig. 6.

(a) Simulated far-field patterns of modes a and b and a+b are compared with the measured far-field pattern at 50 mA, and (b) modulation periods vs. far-field angle for a theoretical calculation and for the experiment result.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ei=Ei0exp[(ϕΔϕi)2ϕi02]exp[i(ωtkri+βi)],
I=|E1+E1|2=|E1|2+|E2|2+2|E1||E2|γcos(k(r1r2)Δβ)
k(r1r2)=2πhsinϕ/λ,

Metrics