Abstract

An intracavity polarizing fiber is proposed to control the emission regime of a passively mode-locked fiber laser. Stable operation in self-starting high and low dispersion soliton mode-locking and 100 GHz multiwavelength regimes is demonstrated through numerical simulations and experimental validation. Mode-locking stability is ensured by a saturable absorber in the ring cavity. The effective selection of operation regime is dynamically carried out by controlling the intracavity polarization state.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
    [CrossRef]
  2. E. P. Ippen, Appl. Phys. B 58, 159 (1994).
    [CrossRef]
  3. H. Haus, IEEE J. Quantum Electron. 11, 736 (1975).
    [CrossRef]
  4. F. X. Kärtner, J. Aus der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
    [CrossRef]
  5. Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, Opt. Lett. 33, 324 (2008).
    [CrossRef]
  6. S. Li, X. Chen, D. Kuksenkov, J. Koh, M. Li, L. Zenteno, and D. Nolan, Opt. Express 14, 6098 (2006).
    [CrossRef]
  7. P. S. Liang, Z. X. Zhang, Q. Q. Kuang, and M. H. Sang, Laser Phys. 19, 2124 (2009).
    [CrossRef]
  8. D. Marcuse, IEEE J. Quantum Electron. 26, 550 (1990).
    [CrossRef]
  9. C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
    [CrossRef]
  10. N. J. Smith, K. J. Blow, and I. Andonovic, J. Lightwave Technol. 10, 1329 (1992).
    [CrossRef]
  11. A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, Opt. Express 16, 8181 (2008).
    [CrossRef]

2009 (2)

M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
[CrossRef]

P. S. Liang, Z. X. Zhang, Q. Q. Kuang, and M. H. Sang, Laser Phys. 19, 2124 (2009).
[CrossRef]

2008 (2)

2006 (1)

1998 (1)

F. X. Kärtner, J. Aus der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
[CrossRef]

1994 (1)

E. P. Ippen, Appl. Phys. B 58, 159 (1994).
[CrossRef]

1992 (1)

N. J. Smith, K. J. Blow, and I. Andonovic, J. Lightwave Technol. 10, 1329 (1992).
[CrossRef]

1990 (1)

D. Marcuse, IEEE J. Quantum Electron. 26, 550 (1990).
[CrossRef]

1989 (1)

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[CrossRef]

1975 (1)

H. Haus, IEEE J. Quantum Electron. 11, 736 (1975).
[CrossRef]

Andonovic, I.

N. J. Smith, K. J. Blow, and I. Andonovic, J. Lightwave Technol. 10, 1329 (1992).
[CrossRef]

Aus der Au, J.

F. X. Kärtner, J. Aus der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
[CrossRef]

Blow, K. J.

N. J. Smith, K. J. Blow, and I. Andonovic, J. Lightwave Technol. 10, 1329 (1992).
[CrossRef]

Chen, X.

Fermann, M. E.

M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
[CrossRef]

Hartl, I.

M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
[CrossRef]

Haus, H.

H. Haus, IEEE J. Quantum Electron. 11, 736 (1975).
[CrossRef]

Ippen, E. P.

E. P. Ippen, Appl. Phys. B 58, 159 (1994).
[CrossRef]

Kärtner, F. X.

F. X. Kärtner, J. Aus der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
[CrossRef]

Keller, U.

F. X. Kärtner, J. Aus der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
[CrossRef]

Koh, J.

Kracht, D.

Kuang, Q. Q.

P. S. Liang, Z. X. Zhang, Q. Q. Kuang, and M. H. Sang, Laser Phys. 19, 2124 (2009).
[CrossRef]

Kuksenkov, D.

Li, M.

Li, S.

Liang, P. S.

P. S. Liang, Z. X. Zhang, Q. Q. Kuang, and M. H. Sang, Laser Phys. 19, 2124 (2009).
[CrossRef]

Lin, J.

Marcuse, D.

D. Marcuse, IEEE J. Quantum Electron. 26, 550 (1990).
[CrossRef]

Menyuk, C. R.

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[CrossRef]

Morgner, U.

Nolan, D.

Ruehl, A.

Sang, M. H.

P. S. Liang, Z. X. Zhang, Q. Q. Kuang, and M. H. Sang, Laser Phys. 19, 2124 (2009).
[CrossRef]

Smith, N. J.

N. J. Smith, K. J. Blow, and I. Andonovic, J. Lightwave Technol. 10, 1329 (1992).
[CrossRef]

Wandt, D.

Wu, J.

Xia, Y.

Xu, K.

Zenteno, L.

Zhan, L.

Zhang, Z.

Zhang, Z. X.

P. S. Liang, Z. X. Zhang, Q. Q. Kuang, and M. H. Sang, Laser Phys. 19, 2124 (2009).
[CrossRef]

Appl. Phys. B (1)

E. P. Ippen, Appl. Phys. B 58, 159 (1994).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. Haus, IEEE J. Quantum Electron. 11, 736 (1975).
[CrossRef]

D. Marcuse, IEEE J. Quantum Electron. 26, 550 (1990).
[CrossRef]

C. R. Menyuk, IEEE J. Quantum Electron. 25, 2674 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. X. Kärtner, J. Aus der Au, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 159 (1998).
[CrossRef]

M. E. Fermann and I. Hartl, IEEE J. Sel. Top. Quantum Electron. 15, 191 (2009).
[CrossRef]

J. Lightwave Technol. (1)

N. J. Smith, K. J. Blow, and I. Andonovic, J. Lightwave Technol. 10, 1329 (1992).
[CrossRef]

Laser Phys. (1)

P. S. Liang, Z. X. Zhang, Q. Q. Kuang, and M. H. Sang, Laser Phys. 19, 2124 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of the passively mode-locked fiber laser setup. DFB, distributed feedback pump diode laser; WDM, 980/1550 wavelength division multiplexer; Er3+, erbium-doped fiber; PC, polarization controller; and SA, semiconductor saturable absorber. Inset: cross section of PZ fiber.

Fig. 2.
Fig. 2.

(a) Calculated and (b) measured optical output spectra of the three operation regimes of the laser.

Fig. 3.
Fig. 3.

Calculated stable mode-locked pulse formation in the high dispersion solitonic regime. A Gaussian pulse of 1 ps width is employed as an initial wavefunction. Inset: pulse width and peak intensity evolution.

Fig. 4.
Fig. 4.

Pulsed temporal wavefunction of the laser output in the low-dispersion soliton regime and in the high-dispersion soliton regime with an oscilloscope resolution of 7 ps. Inset: autocorrelation trace of the high-dispersion soliton regime pulses with a resolution of 10 fs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(z+β1xt+iβ2x22t2+αx2g2Dg22t2)Ax=iγ(|Ax|2+23|Ay|2)Ax+iγ3Ax*Ay2exp(2iΔβ0z),
(z+β1yt+iβ2y22t2+αy2g2Dg22t2)Ay=iγ(|Ay|2+23|Ax|2)Ay+iγ3Ay*Ax2exp(2iΔβ0z).
|Tx|2=cos2(θ)+τ2sin2(θ)+τsin(2θ)cos(Δφ),
Δλ=λ2/(ΔnLPZ),

Metrics