Abstract

We examine the relationship between the strength of the intensity fluctuations and the polarimetric properties of a random electromagnetic field composed of a Gaussian, random field, and nonrandom field, and we present a method for determining the state of polarization of the Gaussian random field. The approach relies on incoherently mixing a Gaussian random field with a controllable reference field and measuring the intensity fluctuations of their superposition. We demonstrate that by controlling the reference field, the full polarimetric information about the Gaussian random field can be uniquely determined.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Pecora, ed., Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum Press, 1985).
  2. E. Wolf, Proc. Phys. Soc. London 76, 424 (1960).
    [CrossRef]
  3. M. Mujat, A. Dogariu, and G. S. Agarwal, Opt. Lett. 29, 1539 (2004).
    [CrossRef]
  4. H. C. Jacks, and O. Korotkova, Appl. Phys. B 103, 413 (2010).
    [CrossRef]
  5. T. Shirai, H. Kellock, T. Setälä, and A. T. Friberg, Opt. Lett. 36, 2880 (2011).
    [CrossRef]
  6. P. R. Smith, O. Kusmartseva, and R. Naimimohasses, Opt. Lett. 26, 1289 (2001).
    [CrossRef]
  7. J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, and E. Mozaffari, Meas. Sci. Technol. 15, 771 (2004).
    [CrossRef]
  8. D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett. 100, 043901 (2008).
    [CrossRef]
  9. S. Sukhov, D. Haefner, and A. Dogariu, J. Opt. Soc. Am. A 27, 827 (2010).
    [CrossRef]
  10. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  11. J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company, 1997).
  12. E. Collett, Polarized Light. Fundamentals and Applications (Dekker, 1993).

2011 (1)

2010 (2)

S. Sukhov, D. Haefner, and A. Dogariu, J. Opt. Soc. Am. A 27, 827 (2010).
[CrossRef]

H. C. Jacks, and O. Korotkova, Appl. Phys. B 103, 413 (2010).
[CrossRef]

2008 (1)

D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett. 100, 043901 (2008).
[CrossRef]

2004 (2)

J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, and E. Mozaffari, Meas. Sci. Technol. 15, 771 (2004).
[CrossRef]

M. Mujat, A. Dogariu, and G. S. Agarwal, Opt. Lett. 29, 1539 (2004).
[CrossRef]

2001 (1)

1960 (1)

E. Wolf, Proc. Phys. Soc. London 76, 424 (1960).
[CrossRef]

Agarwal, G. S.

Chang, P. C. Y.

J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, and E. Mozaffari, Meas. Sci. Technol. 15, 771 (2004).
[CrossRef]

Collett, E.

E. Collett, Polarized Light. Fundamentals and Applications (Dekker, 1993).

Dogariu, A.

Friberg, A. T.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company, 1997).

Haefner, D.

S. Sukhov, D. Haefner, and A. Dogariu, J. Opt. Soc. Am. A 27, 827 (2010).
[CrossRef]

D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett. 100, 043901 (2008).
[CrossRef]

Hopcraft, K. I.

J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, and E. Mozaffari, Meas. Sci. Technol. 15, 771 (2004).
[CrossRef]

Jacks, H. C.

H. C. Jacks, and O. Korotkova, Appl. Phys. B 103, 413 (2010).
[CrossRef]

Kellock, H.

Korotkova, O.

H. C. Jacks, and O. Korotkova, Appl. Phys. B 103, 413 (2010).
[CrossRef]

Kusmartseva, O.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Mozaffari, E.

J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, and E. Mozaffari, Meas. Sci. Technol. 15, 771 (2004).
[CrossRef]

Mujat, M.

Naimimohasses, R.

Setälä, T.

Shirai, T.

Smith, P. R.

Sukhov, S.

S. Sukhov, D. Haefner, and A. Dogariu, J. Opt. Soc. Am. A 27, 827 (2010).
[CrossRef]

D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett. 100, 043901 (2008).
[CrossRef]

Walker, J. G.

J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, and E. Mozaffari, Meas. Sci. Technol. 15, 771 (2004).
[CrossRef]

Wolf, E.

E. Wolf, Proc. Phys. Soc. London 76, 424 (1960).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Appl. Phys. B (1)

H. C. Jacks, and O. Korotkova, Appl. Phys. B 103, 413 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

J. G. Walker, P. C. Y. Chang, K. I. Hopcraft, and E. Mozaffari, Meas. Sci. Technol. 15, 771 (2004).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

D. Haefner, S. Sukhov, and A. Dogariu, Phys. Rev. Lett. 100, 043901 (2008).
[CrossRef]

Proc. Phys. Soc. London (1)

E. Wolf, Proc. Phys. Soc. London 76, 424 (1960).
[CrossRef]

Other (4)

R. Pecora, ed., Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum Press, 1985).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

J. W. Goodman, Speckle Phenomena in Optics (Roberts and Company, 1997).

E. Collett, Polarized Light. Fundamentals and Applications (Dekker, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1.

The experimental (dots) and theoretical (solid curves) intensity contrasts for (a) vertically polarized, (b) partially vertically polarized with D 0.46 , (c) elliptically polarized, and (d) unpolarized fluctuating fields as a function of the orientation of a linearly polarized reference field. All of the plots are on the same scale. The DOP and Stokes vector for the best fit to the experimental contrasts are shown on the right of each plot, and the DOP and Stokes vector measured with a quarter wave plate and polarizer are shown on the left.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F ( t ) = ( { P x ( t ) exp [ i ϕ x ( t ) ] + U x ( t ) exp [ i φ x ( t ) ] } x ^ + { P y ( t ) exp [ i ϕ y ( t ) ] + U y ( t ) exp [ i φ y ( t ) ] } y ^ ) exp ( i ω ¯ t ) ,
( Δ I ( r , t ) ) 2 = ( 1 + D 2 ) I ( r , t ) 2 / 2 ,
D | F | 2 = P x 2 + P y 2 , ( 1 D ) | F | 2 = U x 2 + U y 2 , P y 2 / P x 2 = A U y 2 / U x 2 = 1 .
I i ( α ) = P i 2 + R i 2 ( α ) + U i 2 + 2 P i R i ( α ) cos ( ϕ i ) + 2 P i U i cos ( ϕ i φ i ) + 2 U i R i ( α ) cos ( φ i ) ,
I ( α ) = | F | 2 + | R | 2 ,
( Δ I ( α ) ) 2 = | F | 2 2 [ ( 1 + D 2 ) / 2 ] + | F | 2 | R | 2 { ( 1 D ) + 2 D [ 1 + ( A 1 ) sin 2 ( ψ α ) ] ( 1 + A ) 1 } .
C ( α ) = ( Δ I ( α ) ) 2 / I ( α ) .
χ = tan 1 ( A ) , s 1 = D cos ( 2 ψ ) cos ( 2 χ ) , s 2 = D sin ( 2 ψ ) cos ( 2 χ ) , s 3 = D sin ( 2 χ ) ,

Metrics