Abstract

Liquid-filled hollow-core photonic crystal fibers (HC-PCFs) are perfect optofluidic channels, uniquely providing low-loss optical guidance in a liquid medium. As a result, the overlap of the dissolved specimen and the intense light field in the micronsized core is increased manyfold compared to conventional bioanalytical techniques, facilitating highly-efficient photoactivation processes. Here we introduce a novel integrated analytical technology for photochemistry by microfluidic coupling of a HC-PCF nanoflow reactor to supplementary detection devices. Applying a continuous flow through the fiber, we deliver photochemical reaction products to a mass spectrometer in an online and hence rapid fashion, which is highly advantageous over conventional cuvette-based approaches.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photon. 1, 106 (2007).
    [CrossRef]
  2. X. Fan and I. M. White, Nat. Photon. 5, 591 (2011).
    [CrossRef]
  3. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef]
  4. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. St. J. Russell, Chem. Eur. J. 16, 5607 (2010).
    [CrossRef]
  5. A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
    [CrossRef]
  6. W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, Biochem. J. 355, 545 (2001).
  7. J. M. Pratt and J. Chem Soc., 5154 (1964).
  8. N. J. Farrer, L. Salassa, and P. J. Sadler, Dalton Trans. 48, 10690 (2009).
    [CrossRef]
  9. M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
    [CrossRef]
  10. R. D. Oleschuk and D. J. Harrison, Trends Anal. Chem. 19, 379 (2000).
    [CrossRef]

2012 (1)

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

2011 (1)

X. Fan and I. M. White, Nat. Photon. 5, 591 (2011).
[CrossRef]

2010 (1)

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. St. J. Russell, Chem. Eur. J. 16, 5607 (2010).
[CrossRef]

2009 (1)

N. J. Farrer, L. Salassa, and P. J. Sadler, Dalton Trans. 48, 10690 (2009).
[CrossRef]

2007 (1)

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photon. 1, 106 (2007).
[CrossRef]

2003 (1)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

2002 (1)

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

2001 (1)

W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, Biochem. J. 355, 545 (2001).

2000 (1)

R. D. Oleschuk and D. J. Harrison, Trends Anal. Chem. 19, 379 (2000).
[CrossRef]

1964 (1)

J. M. Pratt and J. Chem Soc., 5154 (1964).

Brivio, M.

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

Chem Soc., J.

J. M. Pratt and J. Chem Soc., 5154 (1964).

Chen, J. S. Y.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. St. J. Russell, Chem. Eur. J. 16, 5607 (2010).
[CrossRef]

Cubillas, A. M.

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photon. 1, 106 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photon. 1, 106 (2007).
[CrossRef]

Etzold, B. J.

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

Euser, T. G.

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. St. J. Russell, Chem. Eur. J. 16, 5607 (2010).
[CrossRef]

Fan, X.

X. Fan and I. M. White, Nat. Photon. 5, 591 (2011).
[CrossRef]

Farrer, N. J.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. St. J. Russell, Chem. Eur. J. 16, 5607 (2010).
[CrossRef]

N. J. Farrer, L. Salassa, and P. J. Sadler, Dalton Trans. 48, 10690 (2009).
[CrossRef]

Fokkens, R. H.

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

Goedbloed, M.

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

Griffiths, W. J.

W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, Biochem. J. 355, 545 (2001).

Harrison, D. J.

R. D. Oleschuk and D. J. Harrison, Trends Anal. Chem. 19, 379 (2000).
[CrossRef]

Jonsson, A. P.

W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, Biochem. J. 355, 545 (2001).

Liu, S.

W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, Biochem. J. 355, 545 (2001).

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photon. 1, 106 (2007).
[CrossRef]

Oleschuk, R. D.

R. D. Oleschuk and D. J. Harrison, Trends Anal. Chem. 19, 379 (2000).
[CrossRef]

Pratt, J. M.

J. M. Pratt and J. Chem Soc., 5154 (1964).

Rai, D. K.

W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, Biochem. J. 355, 545 (2001).

Reinhoudt, D. N.

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

Russell, P. St. J.

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. St. J. Russell, Chem. Eur. J. 16, 5607 (2010).
[CrossRef]

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

Sadler, P. J.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. St. J. Russell, Chem. Eur. J. 16, 5607 (2010).
[CrossRef]

N. J. Farrer, L. Salassa, and P. J. Sadler, Dalton Trans. 48, 10690 (2009).
[CrossRef]

Salassa, L.

N. J. Farrer, L. Salassa, and P. J. Sadler, Dalton Trans. 48, 10690 (2009).
[CrossRef]

Scharrer, M.

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

Schmidt, M.

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

Taccardi, N.

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

Tas, N. R.

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

van den Berg, A.

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

Verboom, W.

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

Wang, Y.

W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, Biochem. J. 355, 545 (2001).

Wasserscheid, P.

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

White, I. M.

X. Fan and I. M. White, Nat. Photon. 5, 591 (2011).
[CrossRef]

Anal. Chem. (1)

M. Brivio, R. H. Fokkens, W. Verboom, D. N. Reinhoudt, N. R. Tas, M. Goedbloed, and A. van den Berg, Anal. Chem. 74, 3972 (2002).
[CrossRef]

Biochem. J. (1)

W. J. Griffiths, A. P. Jonsson, S. Liu, D. K. Rai, and Y. Wang, Biochem. J. 355, 545 (2001).

Chem. Eur. J. (2)

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, and P. St. J. Russell, Chem. Eur. J. 16, 5607 (2010).
[CrossRef]

A. M. Cubillas, M. Schmidt, M. Scharrer, T. G. Euser, B. J. Etzold, N. Taccardi, P. Wasserscheid, and P. St. J. Russell, Chem. Eur. J. 18, 1586 (2012).
[CrossRef]

Dalton Trans. (1)

N. J. Farrer, L. Salassa, and P. J. Sadler, Dalton Trans. 48, 10690 (2009).
[CrossRef]

Nat. Photon. (2)

C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photon. 1, 106 (2007).
[CrossRef]

X. Fan and I. M. White, Nat. Photon. 5, 591 (2011).
[CrossRef]

Science (1)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

Trends Anal. Chem. (1)

R. D. Oleschuk and D. J. Harrison, Trends Anal. Chem. 19, 379 (2000).
[CrossRef]

Other (1)

J. M. Pratt and J. Chem Soc., 5154 (1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of setup (not to scale). Microfluidic circuitry denoted in pink (total dead volume 15μL). Inset: technical drawing of MFC-to-fiber mount. (b) Side view of MFC-to-fiber mount. Standard PEEK-tubing fittings are screwed into a custom-built aluminum fiber-coupling stage mount and against the MFC-channel holes to provide a leak-tight connection (sealed with teflon-tape).

Fig. 2.
Fig. 2.

(a) Cross-sectional scanning electron micrograph of the kagome-structured HC-PCF (core diameter 19.7 µm). (b) Measured mode irradiance profile at 488 nm (normalized, fiber length is 25 cm). (c) Measured flow rate. After 225s, the optimal flow rate for the mass spectrometer ϕMS=27.7nL/s is reached. The right-hand axis shows the corresponding flow speed in the fiber core. Flow disturbances caused by bubbles are easily detected (circle).

Fig. 3.
Fig. 3.

(a) Structure of cyanocobalamin (CNCbl); the cyano-group (pink) dissociates upon irradiation and is replaced by a water molecule to form aquacobalamin (H2OCbl). (b) Absorption spectra before (CNCbl) and after (H2OCbl) irradiation (data from [4]). (c) Fiber transmission decrease at 488 nm and zero flow due to photoconversion of a 5μmolL1 sample of CNCbl to H2OCbl (intensity 54W/cm2); the blue curve corresponds to a single exponential decay fit, the green dashed curve to a reaction-kinetics model without freely adjustable parameters.

Fig. 4.
Fig. 4.

Mass spectra for cyanocobalamin (CNCbl) photoconversion. Top: sample directly injected into the mass spectrometer, not irradiated (left) and irradiated for 10 h at I0=40mW/cm2 in a cuvette (right). Bottom: Sample introduction via the integrated HC-PCF-system, mass spectra obtained after 15min; not irradiated (left) and irradiated at I0=700W/cm2 for 20 s (right).

Metrics