Abstract

We present a method to determine the three-dimensional (3D) deformation vectors of an arbitrary stressed object by combining stereophotogrammetry and digital holography in a setup with four cameras. The resulting data consists of a dense 3D point cloud, where every point is associated with a deformation vector. Our method is able to calculate the deformation without prior knowledge of the sensitivity vectors or the object surface. In the experimental setup only the base distance of the cameras needs to be known.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Grosse, J. Buehl, H. Babovsky, A. Kiessling, and R. Kowarschik, Opt. Lett. 35, 1233 (2010).
    [CrossRef]
  2. H. Babovsky, M. Grosse, J. Buehl, A. Kiessling, and R. Kowarschik, Opt. Lett. 36, 4512 (2011).
    [CrossRef]
  3. J. E. Sollid, Appl. Opt. 8, 1587 (1969).
    [CrossRef]
  4. U. Schnars and W. Jüptner, Appl. Opt. 33, 179 (1994).
    [CrossRef]
  5. D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
    [CrossRef]
  6. S. Schedin, G. Pedrini, H. Tiziani, and F. Mendoza Santoyo, Appl. Opt. 38, 7056 (1999).
    [CrossRef]
  7. D. Ghiglia and L. Romero, J. Opt. Soc. Am. A 11, 107 (1994).
    [CrossRef]
  8. R. Hartley, in Computer Vision ECCV ’92 (Springer, 1992), pp. 579–587.
  9. G. Stroke, Appl. Phys. Lett. 6, 201 (1965).
    [CrossRef]
  10. B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, Vision Algorithms: Theory and Practice (Springer, 2000), pp. 153–177.
  11. W. Osten, Opt. Acta 32, 827 (1985).
    [CrossRef]

2011 (1)

2010 (1)

2006 (1)

D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
[CrossRef]

1999 (1)

1994 (2)

1985 (1)

W. Osten, Opt. Acta 32, 827 (1985).
[CrossRef]

1969 (1)

1965 (1)

G. Stroke, Appl. Phys. Lett. 6, 201 (1965).
[CrossRef]

Babovsky, H.

Bischoff, G.

D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
[CrossRef]

Brcz, Z.

D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
[CrossRef]

Buehl, J.

Dirksen, D.

D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
[CrossRef]

Fitzgibbon, A.

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, Vision Algorithms: Theory and Practice (Springer, 2000), pp. 153–177.

Gettkant, J.

D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
[CrossRef]

Ghiglia, D.

Grosse, M.

Hartley, R.

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, Vision Algorithms: Theory and Practice (Springer, 2000), pp. 153–177.

R. Hartley, in Computer Vision ECCV ’92 (Springer, 1992), pp. 579–587.

Jüptner, W.

Kemper, B.

D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
[CrossRef]

Kiessling, A.

Kowarschik, R.

McLauchlan, P.

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, Vision Algorithms: Theory and Practice (Springer, 2000), pp. 153–177.

Mendoza Santoyo, F.

Osten, W.

W. Osten, Opt. Acta 32, 827 (1985).
[CrossRef]

Pedrini, G.

Romero, L.

Schedin, S.

Schnars, U.

Sollid, J. E.

Stroke, G.

G. Stroke, Appl. Phys. Lett. 6, 201 (1965).
[CrossRef]

Tiziani, H.

Triggs, B.

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, Vision Algorithms: Theory and Practice (Springer, 2000), pp. 153–177.

von Bally, G.

D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

G. Stroke, Appl. Phys. Lett. 6, 201 (1965).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

W. Osten, Opt. Acta 32, 827 (1985).
[CrossRef]

Opt. Lasers Eng. (1)

D. Dirksen, J. Gettkant, G. Bischoff, B. Kemper, Z. Brcz, and G. von Bally, Opt. Lasers Eng. 44, 443 (2006).
[CrossRef]

Opt. Lett. (2)

Other (2)

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, Vision Algorithms: Theory and Practice (Springer, 2000), pp. 153–177.

R. Hartley, in Computer Vision ECCV ’92 (Springer, 1992), pp. 579–587.

Supplementary Material (1)

» Media 1: AVI (1054 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Two object states A and B, sensitivity vector S, deformation vector d, and unit vectors r from P to C (observation vector) and q from P to laser source Q (illumination vector). P and P are homologous points.

Fig. 2.
Fig. 2.

Holographic–stereophotogrammetric setup with four cameras. Helium–neon laser (λ=633nm); BS, beam splitter; L1L5, lenses; PH, pinhole; S1 and S2, diffusers; C0C3, cameras; O, object. The cameras C0 and C3 are located below and above the plane of drawing, respectively.

Fig. 3.
Fig. 3.

Rewrapped phase images of a bent metal plate as seen by each of the four cameras. The different object sizes are due to perspective.

Fig. 4.
Fig. 4.

(Media 1) Magnified (1000×) deformation vectors mapped to 3D object points. Only 0.4% of all found points/vectors is shown.

Fig. 5.
Fig. 5.

Absolute value of the deformation of a bent metal plate. In the lower left section some points are missing due to shading by a mounting screw.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=S·d,
Δϕi=Si·d=2πλ(ri+q)·d.
Δϕ0Δϕi=2πλ(r0-ri)·d,i=13.
G=(r0xr1xr0xr2xr0xr3xr0yr1yr0yr2yr0yr3yr0zr1zr0zr2zr0zr3z),
Δϕ=(Δϕ0Δϕ1Δϕ0Δϕ2Δϕ0Δϕ3),
G·d=λ2πΔϕ.

Metrics