Abstract

Transverse parasitic lasing is well known for limiting the signal gain and the pulse energy that can be extracted from Ti:sapphire petawatt amplifiers. We have developed a technique for suppressing these parasitic lasing modes based on perfect refractive index-matching liquid doped with a broad-bandwidth absorber to suppress the transverse lasing while ensuring proper heat removal from the Ti:sapphire crystal. The 800 nm laser output with a bandwidth of 41 nm (FWHM) and peak energy of 22.7 J at a repetition rate of 1 Hz is demonstrated.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. G. Patterson, J. Bonlie, D. Price, and B. White, Opt. Lett. 24, 963 (1999).
    [CrossRef]
  2. F. Ple, M. Pittman, G. Jamelot, and J. P. Chambaret, Opt. Lett. 32, 238 (2007).
    [CrossRef]
  3. K. Ertel, C. Hooker, S. J. Hawkes, B. T. Parry, and J. L. Collier, Opt. Express 16, 8039 (2008).
    [CrossRef]
  4. X. Liang, Y. Leng, C. Wang, C. Li, L. Lin, B. Zhao, Y. Jiang, X. Lu, M. Hu, C. Zhang, H. Lu, D. Yin, Y. Jiang, X. Lu, H. Wei, J. Zhu, R. Li, and Z. Xu, Opt. Express 15, 15335 (2007).
    [CrossRef]
  5. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P. R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, and T. Tajima, Opt. Lett. 35, 1497 (2010).
    [CrossRef]
  6. J. P. Chambaret, in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMI2.
  7. S. Fourmaux, S. Payeur, A. Alexandrov, C. Serbanescu, F. Martin, T. Ozaki, A. Kudryashov, and J. C. Kieffer, Opt. Express 16, 11987 (2008).
    [CrossRef]

2010 (1)

2008 (2)

2007 (2)

1999 (1)

Alexandrov, A.

Bolton, P. R.

Bonlie, J.

Chambaret, J. P.

F. Ple, M. Pittman, G. Jamelot, and J. P. Chambaret, Opt. Lett. 32, 238 (2007).
[CrossRef]

J. P. Chambaret, in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMI2.

Collier, J. L.

Daido, H.

Daito, I.

Ertel, K.

Fourmaux, S.

Hawkes, S. J.

Hooker, C.

Hu, M.

Jamelot, G.

Jiang, Y.

Kanazawa, S.

Kawanishi, S.

Kieffer, J. C.

Kimura, T.

Kiriyama, H.

Kondo, K.

Kondo, S.

Kudryashov, A.

Leng, Y.

Li, C.

Li, R.

Liang, X.

Lin, L.

Lu, H.

Lu, X.

Martin, F.

Mori, M.

Nakai, Y.

Okada, H.

Ozaki, T.

Parry, B. T.

Patterson, F. G.

Payeur, S.

Pittman, M.

Ple, F.

Price, D.

Sasao, F.

Sasao, H.

Serbanescu, C.

Shimomura, T.

Sugiyama, A.

Suzuki, M.

Tajima, T.

Tanoue, M.

Wakai, D.

Wang, C.

Wei, H.

White, B.

Xu, Z.

Yin, D.

Yokoyama, A.

Zhang, C.

Zhao, B.

Zhu, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the system.

Fig. 2.
Fig. 2.

Refractive index curve of Ti:sapphire versus refractive index liquid.

Fig. 3.
Fig. 3.

Transmission of the broadband dye.

Fig. 4.
Fig. 4.

Fluorescence of the Ti:sapphire crystal with (a) ethanol and (b) refractive index liquid mixture. The C-axis is horizontal.

Fig. 5.
Fig. 5.

Beam profile and wavefront of a water-cooled 50 TW laser (before compression). Strehl ratio is >0.9.

Fig. 6.
Fig. 6.

Simulation of temperature map of the liquid and in the Ti:sapphire crystal.

Fig. 7.
Fig. 7.

Beam profile of output of the 22.7 J amplifier.

Metrics