Abstract

A monolithic 1645 nm Er:YAG nonplanar ring oscillator (NPRO) resonantly pumped by a 1532 nm fiber laser is demonstrated. For reducing the energy-transfer upconversion effect, a 0.5% doped Er:YAG nonplanar crystal was used. An up to 6.1 W single frequency laser output at 1645 nm was obtained, with a slope efficiency of 55.2% and an optical efficiency of 48.0%. The linewidth of the Er:YAG NPRO was 14.4 kHz.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, Proc. SPIE 5791, 167 (2005).
    [CrossRef]
  2. K. O. White and W. R. Watkins, Appl. Opt. 14, 2812 (1975).
  3. N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, IEEE J. Quantum Electron. 46, 1039(2010).
    [CrossRef]
  4. J. W. Kim, J. K. Sahu, and W. A. Clarkson, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA4.
  5. T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).
    [CrossRef]
  6. D. W. Chen, P. M. Belden, T. S. Rose, and S. M. Beck, Opt. Lett. 36, 1197 (2011).
    [CrossRef]
  7. A. C. Nilsson, E. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
    [CrossRef]
  8. D. W. Chen, M. Birnbaum, P. M. Belden, T. S. Rose, and S. M. Beck, Opt. Lett. 34, 1501 (2009).
    [CrossRef]
  9. M. O. Iskandarov and A. A. Nikitichev, J. Opt. Technol. 68, 885 (2001).
    [CrossRef]
  10. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
    [CrossRef]
  11. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. 22, 2070 (1986).
    [CrossRef]

2011 (1)

2010 (1)

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, IEEE J. Quantum Electron. 46, 1039(2010).
[CrossRef]

2009 (2)

2005 (1)

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, Proc. SPIE 5791, 167 (2005).
[CrossRef]

2001 (1)

1989 (1)

A. C. Nilsson, E. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

1986 (1)

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[CrossRef]

1985 (1)

1975 (1)

Beck, S. M.

Belden, P. M.

Birnbaum, M.

Byer, R. L.

A. C. Nilsson, E. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).
[CrossRef]

Chang, N. W.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, IEEE J. Quantum Electron. 46, 1039(2010).
[CrossRef]

Chen, D. W.

Clarkson, W. A.

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef]

J. W. Kim, J. K. Sahu, and W. A. Clarkson, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA4.

Gatt, P.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, Proc. SPIE 5791, 167 (2005).
[CrossRef]

Gustafson, E.

A. C. Nilsson, E. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

Hartman, R.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, Proc. SPIE 5791, 167 (2005).
[CrossRef]

Hosken, D. J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, IEEE J. Quantum Electron. 46, 1039(2010).
[CrossRef]

Iskandarov, M. O.

Kane, T. J.

Kim, J. W.

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef]

J. W. Kim, J. K. Sahu, and W. A. Clarkson, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA4.

Kruger, M. S.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[CrossRef]

Mackenzie, J. I.

Malm, A. I. R.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, Proc. SPIE 5791, 167 (2005).
[CrossRef]

Mandelberg, H. I.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[CrossRef]

Mcgrath, P. A.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[CrossRef]

Munch, J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, IEEE J. Quantum Electron. 46, 1039(2010).
[CrossRef]

Nikitichev, A. A.

Nilsson, A. C.

A. C. Nilsson, E. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

Ottaway, D.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, IEEE J. Quantum Electron. 46, 1039(2010).
[CrossRef]

Richter, L. E.

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[CrossRef]

Rose, T. S.

Sahu, J. K.

J. W. Kim, J. K. Sahu, and W. A. Clarkson, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA4.

Stoneman, R. C.

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, Proc. SPIE 5791, 167 (2005).
[CrossRef]

Veitch, P. J.

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, IEEE J. Quantum Electron. 46, 1039(2010).
[CrossRef]

Watkins, W. R.

White, K. O.

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

N. W. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, IEEE J. Quantum Electron. 46, 1039(2010).
[CrossRef]

A. C. Nilsson, E. Gustafson, and R. L. Byer, IEEE J. Quantum Electron. 25, 767 (1989).
[CrossRef]

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. Mcgrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[CrossRef]

J. Opt. Technol. (1)

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (1)

R. C. Stoneman, R. Hartman, A. I. R. Malm, and P. Gatt, Proc. SPIE 5791, 167 (2005).
[CrossRef]

Other (1)

J. W. Kim, J. K. Sahu, and W. A. Clarkson, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuAA4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup of the resonantly pumped 1645 nm Er:YAG NPRO. The dimension of the Er:YAG NPRO is 12mm(width)×4mm(height)×14mm(length). H, magnetic field.

Fig. 2.
Fig. 2.

(a) Longitudinal spectrum of the Er:YAG NPRO measured by using a scanning Fabry–Perot interferometer. (b) Two-dimensional beam profile of the output beam.

Fig. 3.
Fig. 3.

Single frequency output powers versus incident pump powers for different pump spot sizes.

Fig. 4.
Fig. 4.

Power stability of the 1645 nm Er:YAG NPRO. The relative power stability is 0.33% in 30 min.

Fig. 5.
Fig. 5.

Wavelength of the Er:YAG NPRO as a function of the crystal temperature. The wavelength tuning rate is 21.667pm/°C.

Fig. 6.
Fig. 6.

Schematic diagram for measuring the linewidth of the Er:YAG NPRO by using the delayed self-heterodyne method. BS, beam splitter; AOM, acousto-optic modulator.

Fig. 7.
Fig. 7.

Heterodyne signal recorded by a spectrum analyzer. Full width at 3dB was measured to be 28.7 kHz at 6 W output power.

Metrics