Abstract

The process of spontaneous emission can be dramatically modified by optical microstructures and nanostructures. We have studied the modification of fluorescence dynamics using a variable thickness polymer spacer layer fabricated using layer-by-layer self-assembly with nanometer accuracy. The change in fluorescence lifetime with spacer layer thickness agrees well with theoretical predictions based on the modified photonic density of states (PDOS), and yields consistent values for the fluorophores’ intrinsic fluorescence lifetime and quantum yield near a dielectric as well as a plasmonic interface. Based on this observation, we further demonstrate that self-assembled fluorophores can be used to probe the modified PDOS near optical microstructures and nanostructures.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
    [CrossRef]
  2. G. Q. Liu, Y. B. Liao, S. J. Ma, Y. F. Shen, and Z. Q. Ye, J. Opt. Soc. Am. B 27, 1942 (2010).
    [CrossRef]
  3. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
    [CrossRef]
  4. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
    [CrossRef]
  5. C. W. Chen, C. H. Wang, C. M. Wei, and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
    [CrossRef]
  6. M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, Phys. Rev. Lett. 105, 13904 (2010).
    [CrossRef]
  7. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
    [CrossRef]
  8. J. M. Gerard and B. Gayral, J. Lightwave Technol. 17, 2089 (1999).
    [CrossRef]
  9. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
    [CrossRef]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
    [CrossRef]
  11. L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).
  12. W. L. Barnes, J. Mod. Opt. 45, 661 (1998).
    [CrossRef]
  13. H. Kuhn, J. Chem. Phys. 53, 101 (1970).
    [CrossRef]
  14. J. Y. Zhang, X. Y. Wang, and M. Xiao, Opt. Lett. 27, 1253 (2002).
    [CrossRef]
  15. B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, Phys. Rev. Lett. 95 (2005).
  16. K. Ray, R. Badugu, and J. R. Lakowicz, Chem. Mater. 19, 5902 (2007).
    [CrossRef]
  17. A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
    [CrossRef]
  18. K. Itano, J. Y. Choi, and M. F. Rubner, Macromolecules 38, 3450 (2005).
    [CrossRef]
  19. W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).
  20. G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, Phys. Rev. Lett. 88 (2002).
    [CrossRef]
  21. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  22. R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
    [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids Vol. II (Academic Press, 1985).
  24. M. A. Green and M. J. Keevers, Prog. Photovoltaics 3, 189 (1995).
    [CrossRef]

2010 (3)

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, Phys. Rev. Lett. 105, 13904 (2010).
[CrossRef]

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
[CrossRef]

G. Q. Liu, Y. B. Liao, S. J. Ma, Y. F. Shen, and Z. Q. Ye, J. Opt. Soc. Am. B 27, 1942 (2010).
[CrossRef]

2009 (3)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

C. W. Chen, C. H. Wang, C. M. Wei, and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
[CrossRef]

A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
[CrossRef]

2007 (2)

K. Ray, R. Badugu, and J. R. Lakowicz, Chem. Mater. 19, 5902 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

2006 (2)

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef]

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

2005 (3)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, Phys. Rev. Lett. 95 (2005).

K. Itano, J. Y. Choi, and M. F. Rubner, Macromolecules 38, 3450 (2005).
[CrossRef]

2002 (2)

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, Phys. Rev. Lett. 88 (2002).
[CrossRef]

J. Y. Zhang, X. Y. Wang, and M. Xiao, Opt. Lett. 27, 1253 (2002).
[CrossRef]

1999 (1)

1998 (1)

W. L. Barnes, J. Mod. Opt. 45, 661 (1998).
[CrossRef]

1995 (1)

M. A. Green and M. J. Keevers, Prog. Photovoltaics 3, 189 (1995).
[CrossRef]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

1970 (2)

W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).

H. Kuhn, J. Chem. Phys. 53, 101 (1970).
[CrossRef]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

Badugu, R.

K. Ray, R. Badugu, and J. R. Lakowicz, Chem. Mater. 19, 5902 (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, J. Mod. Opt. 45, 661 (1998).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Birowosuto, M. D.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, Phys. Rev. Lett. 105, 13904 (2010).
[CrossRef]

Bohnenberger, J.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, Phys. Rev. Lett. 88 (2002).
[CrossRef]

Boltasseva, A.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
[CrossRef]

Bradley, A. L.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Buchler, B. C.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, Phys. Rev. Lett. 95 (2005).

Byrne, S. J.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef]

Chen, C. W.

C. W. Chen, C. H. Wang, C. M. Wei, and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
[CrossRef]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef]

Chen, Y. F.

C. W. Chen, C. H. Wang, C. M. Wei, and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
[CrossRef]

Choi, J. Y.

K. Itano, J. Y. Choi, and M. F. Rubner, Macromolecules 38, 3450 (2005).
[CrossRef]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Ducker, W. A.

A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
[CrossRef]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Eychmueller, A.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

Gaponik, N.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Gayral, B.

Gerard, J. M.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Green, M. A.

M. A. Green and M. J. Keevers, Prog. Photovoltaics 3, 189 (1995).
[CrossRef]

Gun’ko, Y. K.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).

Heflin, J. R.

A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
[CrossRef]

Hettich, C.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, Phys. Rev. Lett. 95 (2005).

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef]

Hsu, T. M.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef]

Itano, K.

K. Itano, J. Y. Choi, and M. F. Rubner, Macromolecules 38, 3450 (2005).
[CrossRef]

Jacob, Z.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
[CrossRef]

Jain, V.

A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
[CrossRef]

Jang, C.-H.

A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
[CrossRef]

Kalkbrenner, T.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, Phys. Rev. Lett. 95 (2005).

Keevers, M. J.

M. A. Green and M. J. Keevers, Prog. Photovoltaics 3, 189 (1995).
[CrossRef]

Kern, W.

W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).

Kim, J. Y.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
[CrossRef]

Komarala, V. K.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Kuhn, H.

H. Kuhn, J. Chem. Phys. 53, 101 (1970).
[CrossRef]

Lakowicz, J. R.

K. Ray, R. Badugu, and J. R. Lakowicz, Chem. Mater. 19, 5902 (2007).
[CrossRef]

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

Liao, Y. B.

Liu, G. Q.

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Ma, S. J.

Mews, A.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, Phys. Rev. Lett. 88 (2002).
[CrossRef]

Mosk, A. P.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, Phys. Rev. Lett. 105, 13904 (2010).
[CrossRef]

Naik, G. V.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Narimanov, E. E.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids Vol. II (Academic Press, 1985).

Potapova, I.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, Phys. Rev. Lett. 88 (2002).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Puotinen, D. A.

W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).

Rakovich, Y. P.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Ray, K.

K. Ray, R. Badugu, and J. R. Lakowicz, Chem. Mater. 19, 5902 (2007).
[CrossRef]

Rubner, M. F.

K. Itano, J. Y. Choi, and M. F. Rubner, Macromolecules 38, 3450 (2005).
[CrossRef]

Sandoghdar, V.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, Phys. Rev. Lett. 95 (2005).

Schlegel, G.

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, Phys. Rev. Lett. 88 (2002).
[CrossRef]

Shalaev, V. M.

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
[CrossRef]

Shen, Y. F.

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Skipetrov, S. E.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, Phys. Rev. Lett. 105, 13904 (2010).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Tulpar, A.

A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
[CrossRef]

Vos, W. L.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, Phys. Rev. Lett. 105, 13904 (2010).
[CrossRef]

Vuckovic, J.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Wang, C. H.

C. W. Chen, C. H. Wang, C. M. Wei, and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
[CrossRef]

Wang, X. Y.

Wang, Z.

A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
[CrossRef]

Wei, C. M.

C. W. Chen, C. H. Wang, C. M. Wei, and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
[CrossRef]

Xiao, M.

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Ye, Z. Q.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

Zhang, J. Y.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Appl. Phys. B (1)

Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, Appl. Phys. B 100, 215 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmueller, Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

C. W. Chen, C. H. Wang, C. M. Wei, and Y. F. Chen, Appl. Phys. Lett. 94, 71906 (2009).
[CrossRef]

Chem. Mater. (1)

K. Ray, R. Badugu, and J. R. Lakowicz, Chem. Mater. 19, 5902 (2007).
[CrossRef]

J. Chem. Phys. (1)

H. Kuhn, J. Chem. Phys. 53, 101 (1970).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

W. L. Barnes, J. Mod. Opt. 45, 661 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Macromolecules (1)

K. Itano, J. Y. Choi, and M. F. Rubner, Macromolecules 38, 3450 (2005).
[CrossRef]

Nanotech. (1)

A. Tulpar, Z. Wang, C.-H. Jang, V. Jain, J. R. Heflin, and W. A. Ducker, Nanotech. 20 (2009).
[CrossRef]

Nat. Photon. (1)

S. Noda, M. Fujita, and T. Asano, Nat. Photon. 1, 449 (2007).
[CrossRef]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (5)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, Phys. Rev. Lett. 95, 13904 (2005).
[CrossRef]

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, Phys. Rev. Lett. 105, 13904 (2010).
[CrossRef]

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef]

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, Phys. Rev. Lett. 95 (2005).

G. Schlegel, J. Bohnenberger, I. Potapova, and A. Mews, Phys. Rev. Lett. 88 (2002).
[CrossRef]

Prog. Photovoltaics (1)

M. A. Green and M. J. Keevers, Prog. Photovoltaics 3, 189 (1995).
[CrossRef]

RCA Rev. (1)

W. Kern and D. A. Puotinen, RCA Rev. 31, 187 (1970).

Other (3)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

L. Novotny and B. Hecht, Principles of Nano-Optics(Cambridge University, 2006).

E. D. Palik, Handbook of Optical Constants of Solids Vol. II (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the LbL self-assembly on a gold substrate.

Fig. 2.
Fig. 2.

AFM images of (a) fluorescent nanospheres assembled above gold and (b) QDs assembled above Si.

Fig. 3.
Fig. 3.

Fluorescence decay produced by (a) fluorescent nanospheres assembled above gold and (b) QDs assembled above silicon. Fluorescent lifetime measures using colloidal QDs are also given in (b).

Fig. 4.
Fig. 4.

Theoretical and experimental values of fluorescence lifetime as a function of the distance d for (a) fluorescent nanospheres and (b) QDs. For nanospheres on Au, both convolved (solid blue line) and unconvolved theoretical results (dashed black line) are shown in (a). Only convolved theory is shown for nanospheres on Si.

Fig. 5.
Fig. 5.

Theoretical and experimental results showing normalized PDOS as a function of the distance d for fluorescent nanospheres and QDs on gold. The theoretical PDOS refer to the values at the center of the fluorophores.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ=0tI(t)dt/0I(t)dt,
τ=τ0/(1qZ),
Z=134Im0duul1[F(d^,R12)F(s^,R13)F(d^+s^,R12R13)+(1u2)F(d^,R12)F(s^,R13)F(d^+s^,R12R13)],
ρ(λ,d)/ρ0(λ)=1Z=1[(1τ0/τ)/q],

Metrics