Abstract

A linearized analog photonic link (APL) is proposed based on an integratable electro-optic dual-parallel polarization modulator (DPPolM), which consists of two polarization beam splitters and two polarization modulators (PolMs). Theoretical analysis shows that the APL is potentially free from the third-order nonlinear distortion if a polarization controller placed before the DPPolM is carefully adjusted. A proof-of-concept experiment is carried out. A reduction of the third-order intermodulation components as high as 40 dB and an improvement of the spurious-free dynamic range as large as 15.5 dB is achieved as compared with a single PolM-based link. The DPPolM-based APL is simple, compact, and power efficient since it requires only one laser, one modulator, and one photodetector.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Cox, Analog Optical Links: Theory and Practice(Cambridge University, 2004).
  2. X. J. Meng, D. T. K. Tong, T. Chau, and M. C. Wu, IEEE Photon. Technol. Lett. 10, 1620 (1998).
    [CrossRef]
  3. M. J. LaGasse and S. Thaniyavarn, IEEE Photon. Technol. Lett. 9, 681 (1997).
    [CrossRef]
  4. T. R. Clark, S. R. O’Connor, and M. L. Dennis, IEEE Trans. Microwave Theory Technol. 58, 3039 (2010).
    [CrossRef]
  5. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, Opt. Express 18, 27359 (2010).
    [CrossRef]
  6. A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
    [CrossRef]
  7. S. R. O’Connor, T. R. Clark, and D. Novak, J. Lightwave Technol. 26, 2810 (2008).
    [CrossRef]
  8. L. M. Johnson and H. V. Roussell, Opt. Lett. 13, 928 (1988).
    [CrossRef]
  9. S. K. Korotky and R. M. Deridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
    [CrossRef]
  10. J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, in 2011 International Topical Meeting on Microwave Photonics (IEEE, 2011), pp. 230–233.
  11. S. Pan and J. Yao, J. Lightwave Technol. 27, 3531 (2009).
    [CrossRef]

2011 (1)

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

2010 (2)

T. R. Clark, S. R. O’Connor, and M. L. Dennis, IEEE Trans. Microwave Theory Technol. 58, 3039 (2010).
[CrossRef]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, Opt. Express 18, 27359 (2010).
[CrossRef]

2009 (1)

2008 (1)

1998 (1)

X. J. Meng, D. T. K. Tong, T. Chau, and M. C. Wu, IEEE Photon. Technol. Lett. 10, 1620 (1998).
[CrossRef]

1997 (1)

M. J. LaGasse and S. Thaniyavarn, IEEE Photon. Technol. Lett. 9, 681 (1997).
[CrossRef]

1990 (1)

S. K. Korotky and R. M. Deridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[CrossRef]

1988 (1)

Agarwal, A.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Banwell, T.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Chau, T.

X. J. Meng, D. T. K. Tong, T. Chau, and M. C. Wu, IEEE Photon. Technol. Lett. 10, 1620 (1998).
[CrossRef]

Clark, T. R.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, IEEE Trans. Microwave Theory Technol. 58, 3039 (2010).
[CrossRef]

S. R. O’Connor, T. R. Clark, and D. Novak, J. Lightwave Technol. 26, 2810 (2008).
[CrossRef]

Cox, C.

C. Cox, Analog Optical Links: Theory and Practice(Cambridge University, 2004).

Cui, Y.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, in 2011 International Topical Meeting on Microwave Photonics (IEEE, 2011), pp. 230–233.

Dai, J.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, in 2011 International Topical Meeting on Microwave Photonics (IEEE, 2011), pp. 230–233.

Dennis, M. L.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, IEEE Trans. Microwave Theory Technol. 58, 3039 (2010).
[CrossRef]

Deridder, R. M.

S. K. Korotky and R. M. Deridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[CrossRef]

Duan, R.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, in 2011 International Topical Meeting on Microwave Photonics (IEEE, 2011), pp. 230–233.

Hoekman, M.

Johnson, L. M.

Korotky, S. K.

S. K. Korotky and R. M. Deridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[CrossRef]

LaGasse, M. J.

M. J. LaGasse and S. Thaniyavarn, IEEE Photon. Technol. Lett. 9, 681 (1997).
[CrossRef]

Leinse, A.

Lin, J.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, in 2011 International Topical Meeting on Microwave Photonics (IEEE, 2011), pp. 230–233.

Marpaung, D.

Meng, X. J.

X. J. Meng, D. T. K. Tong, T. Chau, and M. C. Wu, IEEE Photon. Technol. Lett. 10, 1620 (1998).
[CrossRef]

Novak, D.

O’Connor, S. R.

T. R. Clark, S. R. O’Connor, and M. L. Dennis, IEEE Trans. Microwave Theory Technol. 58, 3039 (2010).
[CrossRef]

S. R. O’Connor, T. R. Clark, and D. Novak, J. Lightwave Technol. 26, 2810 (2008).
[CrossRef]

Pan, S.

Roeloffzen, C.

Roussell, H. V.

Thaniyavarn, S.

M. J. LaGasse and S. Thaniyavarn, IEEE Photon. Technol. Lett. 9, 681 (1997).
[CrossRef]

Toliver, P.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Tong, D. T. K.

X. J. Meng, D. T. K. Tong, T. Chau, and M. C. Wu, IEEE Photon. Technol. Lett. 10, 1620 (1998).
[CrossRef]

Woodward, T. K.

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

Wu, J.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, in 2011 International Topical Meeting on Microwave Photonics (IEEE, 2011), pp. 230–233.

Wu, M. C.

X. J. Meng, D. T. K. Tong, T. Chau, and M. C. Wu, IEEE Photon. Technol. Lett. 10, 1620 (1998).
[CrossRef]

Xu, K.

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, in 2011 International Topical Meeting on Microwave Photonics (IEEE, 2011), pp. 230–233.

Yao, J.

IEEE J. Sel. Areas Commun. (1)

S. K. Korotky and R. M. Deridder, IEEE J. Sel. Areas Commun. 8, 1377 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Agarwal, T. Banwell, P. Toliver, and T. K. Woodward, IEEE Photon. Technol. Lett. 23, 24 (2011).
[CrossRef]

X. J. Meng, D. T. K. Tong, T. Chau, and M. C. Wu, IEEE Photon. Technol. Lett. 10, 1620 (1998).
[CrossRef]

M. J. LaGasse and S. Thaniyavarn, IEEE Photon. Technol. Lett. 9, 681 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

T. R. Clark, S. R. O’Connor, and M. L. Dennis, IEEE Trans. Microwave Theory Technol. 58, 3039 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Opt. Lett. (1)

Other (2)

J. Dai, K. Xu, R. Duan, Y. Cui, J. Wu, and J. Lin, in 2011 International Topical Meeting on Microwave Photonics (IEEE, 2011), pp. 230–233.

C. Cox, Analog Optical Links: Theory and Practice(Cambridge University, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Proposed analog photonic link based on a dual-parallel polarization modulator: LD, laser diode; PC, polarization controller; PBS, polarization beam splitter; PolM, polarization modulator; PD, photodetector.

Fig. 2.
Fig. 2.

Experiment setup: ATT, attenuator; τ, optical tunable delay line; ESA, electrical spectrum analyzer.

Fig. 3.
Fig. 3.

Electrical spectra of the two-tone input tests for the (a) single polarization modulator (PolM)-based intensity-modulated link and (b) DPPolM-based link.

Fig. 4.
Fig. 4.

Measured fundamental and IMD3 output powers as a function of the input RF power for the (a) DPPolM based link and (b) link with the upper path alone.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E0=P2(cos[ωct+βϕ(t)/2+ϕ0]+cos[ωctβϕ(t)/2]),
[E1E2]=[P12(cos[ωct+β1ϕ(t)/2+ϕ1]+cos[ωctβ1ϕ(t)/2])P22(cos[ωct+β2ϕ(t)/2+ϕ2]+cos[ωctβ2ϕ(t)/2])],
Iac=R(|E1|2+|E2|2)=RP14cos[β1ϕ(t)+ϕ1]+RP24cos[β2ϕ(t)+ϕ2],
IacP1sin[β1ϕ(t)]P2sin[β2ϕ(t)]=(P1β1P2β2)ϕ(t)16(P1β13P2β23)ϕ3(t)+.
ϕ(t)=cos(ω1t)+cos(ω2t).
IacR4{(P1β138P1β13P2β2+38P2β23)[cos(ω1t)+cos(ω2t)]+(124P1β13+124P2β23)[cos(3ω1t)+cos(3ω2t)]+(18P1β13+18P2β23)[cos(2ω1t+ω2t)+cos(2ω2t+ω1t)]+(18P1β13+18P2β23)[cos(2ω1tω2t)+cos(2ω2tω1t)]}.
P1P2=β23β13.
P1P2β2β11.

Metrics