Abstract

Transmission characteristics of polarization-dependent refractometer based on a surface long-period grating (SLPG) inscribed in a D-shaped photonic crystal fiber (PCF) are investigated. The birefringence of SLPG produces the separation of transmission spectra for TE and TM polarization modes. We also measure the sensitivities of PCF-based SLPG to temperature and external refractive index change depending on the input polarization states. The SLPG-based sensor exhibits different temperature and ambient index sensitivities corresponding to TE and TM polarization modes. Therefore, the SLPG inscribed in D-shaped PCFs can effectively discriminate temperature and ambient index sensitivities.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Patrick, A. D. Kersey, and F. Bucholtz, J. Lightwave Technol. 16, 1606 (1998).
    [CrossRef]
  2. H. Dobb, K. Kalli, and D. Webb, Opt. Commun. 260, 184 (2006).
    [CrossRef]
  3. Y. Zhu, Z. He, and H. Du, Sens. Actuators B Chem. 131, 265 (2008).
    [CrossRef]
  4. L. Rindorf and O. Bang, Opt. Lett. 33, 563 (2008).
    [CrossRef]
  5. H. J. Kim, O. J. Kwon, S. B. Lee, and Y. G. Han, Appl. Phys. B 102, 81 (2011).
    [CrossRef]
  6. X. W. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, Opt. Lett. 26, 774 (2001).
    [CrossRef]
  7. X. Chen, K. Zhou, L. Zhang, and I. Bennion, Appl. Opt. 44, 178 (2005).
    [CrossRef]
  8. M. A. Jensen and R. H. Selfridge, J. Opt. Soc. Am. A 9, 1086 (1992).
    [CrossRef]
  9. D. G. Moodie and W. Johnstone, Opt. Lett. 18, 1025 (1993).
    [CrossRef]
  10. R. Vallee and G. He, IEEE J. Lightwave Technol. 11, 1196 (1993).
    [CrossRef]
  11. W. G. Jung, S. W. Kim, and K. T. Kim; IEEE Photon. Technol. Lett. 13, 1209 (2001).
    [CrossRef]
  12. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion, Opt. Lett. 26, 774 (2001).
    [CrossRef]

2011

H. J. Kim, O. J. Kwon, S. B. Lee, and Y. G. Han, Appl. Phys. B 102, 81 (2011).
[CrossRef]

2008

Y. Zhu, Z. He, and H. Du, Sens. Actuators B Chem. 131, 265 (2008).
[CrossRef]

L. Rindorf and O. Bang, Opt. Lett. 33, 563 (2008).
[CrossRef]

2006

H. Dobb, K. Kalli, and D. Webb, Opt. Commun. 260, 184 (2006).
[CrossRef]

2005

2001

1998

1993

D. G. Moodie and W. Johnstone, Opt. Lett. 18, 1025 (1993).
[CrossRef]

R. Vallee and G. He, IEEE J. Lightwave Technol. 11, 1196 (1993).
[CrossRef]

1992

Bang, O.

Bennion, I.

Bucholtz, F.

Chen, X.

Dobb, H.

H. Dobb, K. Kalli, and D. Webb, Opt. Commun. 260, 184 (2006).
[CrossRef]

Du, H.

Y. Zhu, Z. He, and H. Du, Sens. Actuators B Chem. 131, 265 (2008).
[CrossRef]

Gwandu, B. A. L.

Han, Y. G.

H. J. Kim, O. J. Kwon, S. B. Lee, and Y. G. Han, Appl. Phys. B 102, 81 (2011).
[CrossRef]

He, G.

R. Vallee and G. He, IEEE J. Lightwave Technol. 11, 1196 (1993).
[CrossRef]

He, Z.

Y. Zhu, Z. He, and H. Du, Sens. Actuators B Chem. 131, 265 (2008).
[CrossRef]

Jensen, M. A.

Johnstone, W.

Jung, W. G.

W. G. Jung, S. W. Kim, and K. T. Kim; IEEE Photon. Technol. Lett. 13, 1209 (2001).
[CrossRef]

Kalli, K.

H. Dobb, K. Kalli, and D. Webb, Opt. Commun. 260, 184 (2006).
[CrossRef]

Kersey, A. D.

Kim, H. J.

H. J. Kim, O. J. Kwon, S. B. Lee, and Y. G. Han, Appl. Phys. B 102, 81 (2011).
[CrossRef]

Kim, K. T.

W. G. Jung, S. W. Kim, and K. T. Kim; IEEE Photon. Technol. Lett. 13, 1209 (2001).
[CrossRef]

Kim, S. W.

W. G. Jung, S. W. Kim, and K. T. Kim; IEEE Photon. Technol. Lett. 13, 1209 (2001).
[CrossRef]

Kwon, O. J.

H. J. Kim, O. J. Kwon, S. B. Lee, and Y. G. Han, Appl. Phys. B 102, 81 (2011).
[CrossRef]

Lee, S. B.

H. J. Kim, O. J. Kwon, S. B. Lee, and Y. G. Han, Appl. Phys. B 102, 81 (2011).
[CrossRef]

Liu, Y.

Moodie, D. G.

Patrick, H. J.

Rindorf, L.

Selfridge, R. H.

Shu, X.

Shu, X. W.

Vallee, R.

R. Vallee and G. He, IEEE J. Lightwave Technol. 11, 1196 (1993).
[CrossRef]

Webb, D.

H. Dobb, K. Kalli, and D. Webb, Opt. Commun. 260, 184 (2006).
[CrossRef]

Zhang, L.

Zhou, K.

Zhu, Y.

Y. Zhu, Z. He, and H. Du, Sens. Actuators B Chem. 131, 265 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

H. J. Kim, O. J. Kwon, S. B. Lee, and Y. G. Han, Appl. Phys. B 102, 81 (2011).
[CrossRef]

IEEE J. Lightwave Technol.

R. Vallee and G. He, IEEE J. Lightwave Technol. 11, 1196 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

W. G. Jung, S. W. Kim, and K. T. Kim; IEEE Photon. Technol. Lett. 13, 1209 (2001).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Commun.

H. Dobb, K. Kalli, and D. Webb, Opt. Commun. 260, 184 (2006).
[CrossRef]

Opt. Lett.

Sens. Actuators B Chem.

Y. Zhu, Z. He, and H. Du, Sens. Actuators B Chem. 131, 265 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Experimental scheme for an SLPG based on a D-shaped PCF; (b) cross-sectional view of the D-shaped PCF with the microscope image.

Fig. 2.
Fig. 2.

(a) Theoretical analysis of intensity distributions of the core mode in a D-shaped PCF corresponding to TE (at 1377.2 nm) and TM (at 1353.6 nm) modes and (b) contour map of beam propagation with relative intensity. The intensity distributions at the propagation distance of 0.8 mm were shown in the inset.

Fig. 3.
Fig. 3.

(a) Dispersion curve of the SLPG overlay and the D-shaped PCF; and (b) transmission spectra of the SLPG based on the D-shaped PCF depending on the input polarization states.

Fig. 4.
Fig. 4.

Theoretical (line) and experimental (symbols) TE and TM resonant wavelength shifts as a function of (a) temperature and (b) ambient index changes.

Fig. 5.
Fig. 5.

(a) Measurement of ΔλTE and ΔλTM as a function of temperature (at next=1.33) and (b) discrimination of ΔT and Δnext from measurement of ΔλTE and ΔλTM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λm=2πd(ng2(neg,im)2)mπ+φ,(i=TEorTMmode)
φ=tan1ξ(neg2next2)12(ng2neg2)12,
λmTET=K[2πdng(mπ+φ)ng2nef,TE2+2πdngnef,TE2next2(mπ+φ)2(ng2nef,TE2)(1+tan2φ)],λmTMT=K[2πdng(mπ+φ)ng2nef,TM22πdnef,TM2next2×(2tanφng2tanφ/ng2nef,TM2)(mπ+φ)2(1+tan2φ)].
(ΔTΔnext)=(ABCD)1(ΔλTEΔλTM),

Metrics