Abstract

The continued development of femtosecond mid-infrared (IR) sources with ultrabroad spectral width is critical for probing and controlling complex molecular structural dynamics on an ultrafast timescale. We report on a sub-20 fs, coherent mid-IR source with an octave-spanning spectral bandwidth (>2000cm1) tunable from 2–8 micrometers (37.5–150 THz), with energy >0.4μJ/pulse at 1 kHz. The mid-IR pulses are generated by four-wave mixing during the filamentation of intense 800 nm and 400 nm pulses in various gas media. Spectral tunability is achieved by the choice of gas, pressure and input 800 nm pulse energy.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Fayer, Ultrafast Infrared and Raman SpectroscopyMarcel Dekker Practical Spectroscopy Series, Vol. 26 (2001).
  2. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]
  3. C. R. Baiz and K. J. Kubarych, Opt. Lett. 36, 187 (2011).
    [CrossRef]
  4. T. Fuji and T. Suzuki, Opt. Lett. 32, 3330 (2007).
    [CrossRef]
  5. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
    [CrossRef]
  6. P. B. Petersen and A. Tokmakoff, Opt. Lett. 35, 1962 (2010).
    [CrossRef]
  7. F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).
    [CrossRef]
  8. H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, Laser Photonics Rev. 1, 349 (2007).
    [CrossRef]
  9. X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
    [CrossRef]
  10. S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
    [CrossRef]
  11. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, Opt. Lett. 31, 838 (2006).
    [CrossRef]
  12. N. Demirdöven, M. Khalil, O. Golonzka, and A. Tokmakoff, Opt. Lett. 27, 433 (2002).
    [CrossRef]
  13. D. P. Shelton, Phys. Rev. A 42, 2578 (1990).
    [CrossRef]
  14. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).
    [CrossRef]
  15. S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
    [CrossRef]
  16. P. Lassonde, F. Theberge, S. Payeur, M. Chateauneuf, J. Dubois, and J. C. Kieffer, Opt. Express 19, 14093 (2011).
    [CrossRef]

2012 (1)

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

2011 (2)

2010 (2)

P. B. Petersen and A. Tokmakoff, Opt. Lett. 35, 1962 (2010).
[CrossRef]

F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).
[CrossRef]

2008 (1)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

2007 (2)

T. Fuji and T. Suzuki, Opt. Lett. 32, 3330 (2007).
[CrossRef]

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

2006 (2)

2002 (1)

2000 (2)

1998 (1)

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

1990 (1)

D. P. Shelton, Phys. Rev. A 42, 2578 (1990).
[CrossRef]

Azarm, A.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Baiz, C. R.

Chateauneuf, M.

P. Lassonde, F. Theberge, S. Payeur, M. Chateauneuf, J. Dubois, and J. C. Kieffer, Opt. Express 19, 14093 (2011).
[CrossRef]

F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).
[CrossRef]

Chen, Y.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Chin, S.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Cook, D. J.

Dai, J.

X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef]

Daigle, J.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Demirdöven, N.

Dubois, J.

P. Lassonde, F. Theberge, S. Payeur, M. Chateauneuf, J. Dubois, and J. C. Kieffer, Opt. Express 19, 14093 (2011).
[CrossRef]

F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).
[CrossRef]

Fayer, M. D.

M. D. Fayer, Ultrafast Infrared and Raman SpectroscopyMarcel Dekker Practical Spectroscopy Series, Vol. 26 (2001).

Fuji, T.

Fulmer, E. C.

Giessen, H.

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Glownia, J. H.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Golonzka, O.

Hamm, P.

Hochstrasser, R. M.

Kaindl, R. A.

Khalil, M.

Kieffer, J. C.

Kim, K. Y.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Kosareva, O.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Kreß, M.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

Kubarych, K. J.

Kuhl, J.

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Lassonde, P.

Li, R.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Linden, S.

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Liu, J.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Liu, W.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Löffler, T.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

Marceau, C.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Mathieu, P.

F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).
[CrossRef]

Panov, N.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Payeur, S.

Petersen, P. B.

Reimann, K.

Richardson, M.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Rodriguez, G.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Roskos, H. G.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

Roy, G.

F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).
[CrossRef]

Seideman, T.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Shelton, D. P.

D. P. Shelton, Phys. Rev. A 42, 2578 (1990).
[CrossRef]

Shim, S.-H.

Strasfeld, D. B.

Suzuki, T.

Taylor, A. J.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Theberge, F.

P. Lassonde, F. Theberge, S. Payeur, M. Chateauneuf, J. Dubois, and J. C. Kieffer, Opt. Express 19, 14093 (2011).
[CrossRef]

F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).
[CrossRef]

Thomson, M. D.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

Tokmakoff, A.

Wang, T.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Weiner, A. M.

Woerner, M.

Wu, J.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Wurm, M.

Xie, X.

X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef]

Xu, Z.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Yuan, S.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Zanni, M. T.

Zeng, H.

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Zhang, X. C.

X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, Laser Photonics Rev. 1, 349 (2007).
[CrossRef]

Laser Phys. (1)

S. Chin, T. Wang, C. Marceau, J. Wu, J. Liu, O. Kosareva, N. Panov, Y. Chen, J. Daigle, S. Yuan, A. Azarm, W. Liu, T. Seideman, H. Zeng, M. Richardson, R. Li, and Z. Xu, Laser Phys. 22, 1 (2012).
[CrossRef]

Nat. Photon. (1)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (2)

D. P. Shelton, Phys. Rev. A 42, 2578 (1990).
[CrossRef]

F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, and J. Dubois, Phys. Rev. A 81, 033821 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

X. Xie, J. Dai, and X. C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).
[CrossRef]

Phys. Status Solidi B (1)

S. Linden, H. Giessen, and J. Kuhl, Phys. Status Solidi B 206, 119 (1998).
[CrossRef]

Other (1)

M. D. Fayer, Ultrafast Infrared and Raman SpectroscopyMarcel Dekker Practical Spectroscopy Series, Vol. 26 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental layout. Calcite timing plate, TP; dual wave-plate, WP; focusing optic, FO (concave mirror); gas cell, GC; germanium, Ge, long wave pass filter. The solid black, dashed gray and dashed black lines represent the 800 nm, 400 nm, and BBIR pulses, respectively.

Fig. 2.
Fig. 2.

The intensity of the BBIR pulses as a function of pressure for various gases (I800nm=3mJ/pulse).

Fig. 3.
Fig. 3.

(a) BBIR spectra as a function of pressure for air. The inset shows the spectral tuning curves as a function of pressure for various gases. Spectra measured in Ne at 768 and 3740 Torr have respective center wavelengths of 5.0 and 4.5 μm. (b) Experimental XFROG trace of the BBIR pulse generated in air at 1000 Torr with (i) additional 5 mm of CaF2 in the beam path and (ii) the Ge LWP filter replaced with a 250 μm thick Si wafer. (c) Reconstructed electric field intensity and phase of the BBIR pulse. The minimum XFROG retrieval error is 0.0175 on a 256 grid. All the data in this figure is obtained with I800nm=3mJ/pulse.

Fig. 4.
Fig. 4.

BBIR pulse energy as a function of (a) the input 800 nm energy, (b) the ω/2ω time delay, and (c) the analyzer angle. The BBIR pulse is generated in air at 1000 Torr with I800nm=3mJ/pulse for (b) and (c).

Tables (1)

Tables Icon

Table 1. Characteristics of the BBIR Source in Various Gas Media

Metrics