Abstract

A single-mode polarization-maintaining fiber doped to increase the Raman gain while suppressing stimulated Brillouin scattering (SBS) was utilized in a single-stage counter-pumped Raman fiber amplifier. The SBS suppression was achieved through the acoustic tailoring of the core. A pump probe experiment was conducted to characterize the Brillouin gain and indicated the existence of multiple Brillouin peaks. When the amplifier was seeded with approximately 15 mW of 1178 nm light, 11.5 W of cw output power was obtained with a linewidth 2MHz. The application of a thermal gradient to further mitigate the SBS process increased the output power to 18 W, thus providing a net amplifier gain >30dB.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.
  2. Y. Feng, L. R. Taylor, and D. Bonaccini Calia, Opt. Express 16, 10927 (2008).
    [CrossRef]
  3. E. M. Dianov, J. Lightwave Technol. 20, 1457 (2002).
    [CrossRef]
  4. C. Robin and I. Dajani, Opt. Lett. 36, 2641 (2011).
    [CrossRef]
  5. T.-C. Wei, J. Non-Cryst. Solids 321, 126 (2003).
    [CrossRef]
  6. C. Vergien, I. Dajani, and C. Zeringue, Opt. Express 18, 26214 (2010).
    [CrossRef]

2011 (1)

2010 (1)

2008 (1)

2003 (1)

T.-C. Wei, J. Non-Cryst. Solids 321, 126 (2003).
[CrossRef]

2002 (1)

Bonaccini Calia, D.

Broeing, J.

A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.

Chen, M.

A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.

Dajani, I.

Dianov, E. M.

Feng, Y.

Lyngsø, J. K.

A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.

Olausson, C. B.

A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.

Robin, C.

Shirakawa, A.

A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.

Taylor, L. R.

Ueda, K.

A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.

Vergien, C.

Wei, T.-C.

T.-C. Wei, J. Non-Cryst. Solids 321, 126 (2003).
[CrossRef]

Yamahara, Y.

A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.

Zeringue, C.

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

T.-C. Wei, J. Non-Cryst. Solids 321, 126 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (1)

A. Shirakawa, M. Chen, Y. Yamahara, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeing, in CLEO: 2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThU6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of pump probe experiment. The pump power was amplified up to 1 W by using an amplifier (Amp).

Fig. 2.
Fig. 2.

BGS measurement of the acoustically tailored fiber at 40 °C and 80 °C. There are multiple peaks associated with the fiber as well as one peak due to the connector fiber.

Fig. 3.
Fig. 3.

Experimental setup with a counter-propagated pump configuration used in a PM RFA. The WDMs are used to combine/separate the different wavelengths. The TAP is used to monitor the forward and backward propagating light.

Fig. 4.
Fig. 4.

(left) 1178 nm signal and backward power vs. 1120 nm pump power for the Nufern PM980-XP fiber, and (right) similar plots for the acoustically tailored fiber

Fig. 5.
Fig. 5.

Single-frequency signal power vs. launched pump power for the acoustically tailored RFA utilizing a thermal gradient.

Fig. 6.
Fig. 6.

Beam profile of the (left) acoustically tailored fiber and (right) spectral linewidth of the 1178 nm light at 18 W output, showing it to be within the resolution limit of the interferometer.

Metrics