Abstract

We describe a novel three-pulse experimental arrangement for the simultaneous generation and subsequent resolution of all four electric-dipole allowed vibrational sum frequency generation polarization combinations. For noncentrosymmetric and achiral systems, this represents full characterization of all symmetry-allowed elements of the second-order susceptibility, providing a comprehensive intensity level assessment of the system under study. By measuring all relevant signals simultaneously, this approach enables assessment of molecular orientation and structure in dynamic, temporally evolving systems that were previously inaccessible by means of sequentially scanned acquisition of the individual tensor elements.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Lambert, P. B. Davies, and D. J. Neivandt, Appl. Spectrosc. Rev. 40, 103 (2005).
    [CrossRef]
  2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  3. A. J. Moad and G. J. Simpson, J. Phys. Chem. B 108, 3548 (2004).
    [CrossRef]
  4. H. Wang, W. Gan, R. Lu, Y. Rao, and B. Wu, Int. Rev. Phys. Chem. 24, 191 (2005).
    [CrossRef]
  5. X. Chen, J. Wang, A. P. Boughton, C. B. Kristalyn, and Z. Chen, J. Am. Chem. Soc. 129, 1420 (2007).
    [CrossRef]
  6. T. C. Anglin, J. C. Speros, and A. M. Massari, J. Phys. Chem. C 115, 16027 (2011).
    [CrossRef]
  7. T. Anglin, D. O’Brien, and A. Massari, J. Phys. Chem. C 114, 17629 (2010).
    [CrossRef]
  8. T. C. Anglin, Z. Sohrabpour, and A. M. Massari, J. Phys. Chem. C 115, 20258 (2011).
    [CrossRef]
  9. M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
    [CrossRef]

2011 (2)

T. C. Anglin, J. C. Speros, and A. M. Massari, J. Phys. Chem. C 115, 16027 (2011).
[CrossRef]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, J. Phys. Chem. C 115, 20258 (2011).
[CrossRef]

2010 (1)

T. Anglin, D. O’Brien, and A. Massari, J. Phys. Chem. C 114, 17629 (2010).
[CrossRef]

2007 (2)

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
[CrossRef]

X. Chen, J. Wang, A. P. Boughton, C. B. Kristalyn, and Z. Chen, J. Am. Chem. Soc. 129, 1420 (2007).
[CrossRef]

2005 (2)

H. Wang, W. Gan, R. Lu, Y. Rao, and B. Wu, Int. Rev. Phys. Chem. 24, 191 (2005).
[CrossRef]

A. G. Lambert, P. B. Davies, and D. J. Neivandt, Appl. Spectrosc. Rev. 40, 103 (2005).
[CrossRef]

2004 (1)

A. J. Moad and G. J. Simpson, J. Phys. Chem. B 108, 3548 (2004).
[CrossRef]

Anglin, T.

T. Anglin, D. O’Brien, and A. Massari, J. Phys. Chem. C 114, 17629 (2010).
[CrossRef]

Anglin, T. C.

T. C. Anglin, J. C. Speros, and A. M. Massari, J. Phys. Chem. C 115, 16027 (2011).
[CrossRef]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, J. Phys. Chem. C 115, 20258 (2011).
[CrossRef]

Bonn, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
[CrossRef]

Boughton, A. P.

X. Chen, J. Wang, A. P. Boughton, C. B. Kristalyn, and Z. Chen, J. Am. Chem. Soc. 129, 1420 (2007).
[CrossRef]

Chen, X.

X. Chen, J. Wang, A. P. Boughton, C. B. Kristalyn, and Z. Chen, J. Am. Chem. Soc. 129, 1420 (2007).
[CrossRef]

Chen, Z.

X. Chen, J. Wang, A. P. Boughton, C. B. Kristalyn, and Z. Chen, J. Am. Chem. Soc. 129, 1420 (2007).
[CrossRef]

Davies, P. B.

A. G. Lambert, P. B. Davies, and D. J. Neivandt, Appl. Spectrosc. Rev. 40, 103 (2005).
[CrossRef]

Gan, W.

H. Wang, W. Gan, R. Lu, Y. Rao, and B. Wu, Int. Rev. Phys. Chem. 24, 191 (2005).
[CrossRef]

Kim, D.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
[CrossRef]

Kristalyn, C. B.

X. Chen, J. Wang, A. P. Boughton, C. B. Kristalyn, and Z. Chen, J. Am. Chem. Soc. 129, 1420 (2007).
[CrossRef]

Lambert, A. G.

A. G. Lambert, P. B. Davies, and D. J. Neivandt, Appl. Spectrosc. Rev. 40, 103 (2005).
[CrossRef]

Lu, R.

H. Wang, W. Gan, R. Lu, Y. Rao, and B. Wu, Int. Rev. Phys. Chem. 24, 191 (2005).
[CrossRef]

Massari, A.

T. Anglin, D. O’Brien, and A. Massari, J. Phys. Chem. C 114, 17629 (2010).
[CrossRef]

Massari, A. M.

T. C. Anglin, J. C. Speros, and A. M. Massari, J. Phys. Chem. C 115, 16027 (2011).
[CrossRef]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, J. Phys. Chem. C 115, 20258 (2011).
[CrossRef]

Moad, A. J.

A. J. Moad and G. J. Simpson, J. Phys. Chem. B 108, 3548 (2004).
[CrossRef]

Müller, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
[CrossRef]

Neivandt, D. J.

A. G. Lambert, P. B. Davies, and D. J. Neivandt, Appl. Spectrosc. Rev. 40, 103 (2005).
[CrossRef]

O’Brien, D.

T. Anglin, D. O’Brien, and A. Massari, J. Phys. Chem. C 114, 17629 (2010).
[CrossRef]

Rao, Y.

H. Wang, W. Gan, R. Lu, Y. Rao, and B. Wu, Int. Rev. Phys. Chem. 24, 191 (2005).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Simpson, G. J.

A. J. Moad and G. J. Simpson, J. Phys. Chem. B 108, 3548 (2004).
[CrossRef]

Smits, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
[CrossRef]

Sohrabpour, Z.

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, J. Phys. Chem. C 115, 20258 (2011).
[CrossRef]

Sovago, M.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
[CrossRef]

Speros, J. C.

T. C. Anglin, J. C. Speros, and A. M. Massari, J. Phys. Chem. C 115, 16027 (2011).
[CrossRef]

Wang, H.

H. Wang, W. Gan, R. Lu, Y. Rao, and B. Wu, Int. Rev. Phys. Chem. 24, 191 (2005).
[CrossRef]

Wang, J.

X. Chen, J. Wang, A. P. Boughton, C. B. Kristalyn, and Z. Chen, J. Am. Chem. Soc. 129, 1420 (2007).
[CrossRef]

Wu, B.

H. Wang, W. Gan, R. Lu, Y. Rao, and B. Wu, Int. Rev. Phys. Chem. 24, 191 (2005).
[CrossRef]

Wurpel, G. W. H.

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
[CrossRef]

Appl. Spectrosc. Rev. (1)

A. G. Lambert, P. B. Davies, and D. J. Neivandt, Appl. Spectrosc. Rev. 40, 103 (2005).
[CrossRef]

Int. Rev. Phys. Chem. (1)

H. Wang, W. Gan, R. Lu, Y. Rao, and B. Wu, Int. Rev. Phys. Chem. 24, 191 (2005).
[CrossRef]

J. Am. Chem. Soc. (1)

X. Chen, J. Wang, A. P. Boughton, C. B. Kristalyn, and Z. Chen, J. Am. Chem. Soc. 129, 1420 (2007).
[CrossRef]

J. Phys. Chem. B (1)

A. J. Moad and G. J. Simpson, J. Phys. Chem. B 108, 3548 (2004).
[CrossRef]

J. Phys. Chem. C (4)

T. C. Anglin, J. C. Speros, and A. M. Massari, J. Phys. Chem. C 115, 16027 (2011).
[CrossRef]

T. Anglin, D. O’Brien, and A. Massari, J. Phys. Chem. C 114, 17629 (2010).
[CrossRef]

T. C. Anglin, Z. Sohrabpour, and A. M. Massari, J. Phys. Chem. C 115, 20258 (2011).
[CrossRef]

M. Smits, M. Sovago, G. W. H. Wurpel, D. Kim, M. Müller, and M. Bonn, J. Phys. Chem. C 111, 8878 (2007).
[CrossRef]

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic illustration of the optical layout employed for the PM-VSFG experiments. (a) The visible inputs (red) and mixed-polarization IR pulse (black) are combined at the sample to generate two mixed-polarization VSFG outputs (green). (b) The two VSFG beams are further resolved into their component polarizations using the calcite beam displacer. An additional optical filter used to reject residual 800 nm light prior to detection is not shown in the schematic for clarity.

Fig. 2.
Fig. 2.

CCD image of the nonresonant VSFG response from a ZnO thin film on Si illustrating the four active regions of the detector and the corresponding spectra (expressed as intensity versus pixel position).

Fig. 3.
Fig. 3.

Raw CCD image and PM-VSFG spectra for a DP3HT thin film transistor prepared on a fluorosilane-modified substrate. The ssp (purple), sps (green), pss (red), and ppp (blue) spectra shown in the bottom panel appear top to bottom, respectively, in the top panel image. Note that γIR=54.3° and IIRs=2IIRp.

Tables (1)

Tables Icon

Table 1. VSFG Polarization Combinations and Their Corresponding Susceptibility Elements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

kSFG=kVis+kIR,

Metrics