Abstract

In this letter, we propose and analyze an ultra-compact wavelength filter on silicon-based hybrid plasmonic waveguides, which confines light in a nanometeric silica dioxide layer between the silicon substrate and metal cap. The filter consists of a stub structure coupled to a straight waveguide. The three-dimensional finite-difference time-domain (FDTD) method is applied to calculate the spectral responses of such devices. Similar resonant behaviors are obtained since those devices are based on two-dimensional Metal-Insulator-Metal waveguide structure. Results also show that by adding stubs and tuning the distance between stubs can further improve the device’s performance and shape the spectral response to some extent.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, Opt. Express 13, 977 (2005).
    [CrossRef]
  3. G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  4. L. Chen, J. Shakya, and M. Lipson, Opt. Lett. 31, 2133 (2006).
    [CrossRef]
  5. L. Liu, Z. Han, and S. He, Opt. Express 13, 6645 (2005).
    [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
    [CrossRef]
  7. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
    [CrossRef]
  8. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).
    [CrossRef]
  9. D. Dai and S. He, Opt. Express 17, 16646 (2009).
    [CrossRef]
  10. M. Fujii, J. Leuthold, and W. Freude, IEEE Photon. Technol. Lett. 21, 362 (2009).
    [CrossRef]
  11. M. Wu, Z. Han, and V. Van, Opt. Express 18, 11728 (2010).
    [CrossRef]
  12. Z. Han and S. He, Opt. Commun. 278, 199 (2007).
    [CrossRef]
  13. Z. Han, L. Liu, and E. Forsberg, Opt. Commun. 259, 690 (2006).
    [CrossRef]
  14. A. Hosseini and Y. Massoud, Opt. Express 14, 11318 (2006).
    [CrossRef]
  15. X. Lin and X. Huang, Opt. Lett. 33, 2875 (2008).
  16. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, Opt. Express 18, 6191 (2010).
    [CrossRef]
  17. G. Zou, Y. Xiao, Z. Han, C. Dong, X. Chen, J. Cui, G. Guo, and F. Sun, J. Opt. Soc. Am. B 27, 2495 (2010).
    [CrossRef]
  18. M. A. Ordal, L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. Alexander, and C. A. Ward, Appl. Opt. 22, 1099 (1983).
    [CrossRef]

2010

2009

D. Dai and S. He, Opt. Express 17, 16646 (2009).
[CrossRef]

M. Fujii, J. Leuthold, and W. Freude, IEEE Photon. Technol. Lett. 21, 362 (2009).
[CrossRef]

2008

X. Lin and X. Huang, Opt. Lett. 33, 2875 (2008).

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).
[CrossRef]

2007

Z. Han and S. He, Opt. Commun. 278, 199 (2007).
[CrossRef]

2006

2005

1983

Agrawal, G. P.

Alexander, R.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berini, P.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef]

Charbonneau, R.

Chen, L.

Chen, X.

Cui, J.

Dai, D.

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

Dong, C.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef]

Fan, S.

G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Forsberg, E.

Z. Han, L. Liu, and E. Forsberg, Opt. Commun. 259, 690 (2006).
[CrossRef]

Freude, W.

M. Fujii, J. Leuthold, and W. Freude, IEEE Photon. Technol. Lett. 21, 362 (2009).
[CrossRef]

Fujii, M.

M. Fujii, J. Leuthold, and W. Freude, IEEE Photon. Technol. Lett. 21, 362 (2009).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).
[CrossRef]

Guo, G.

Han, Z.

Hattori, H. T.

He, S.

Hosseini, A.

Huang, X.

X. Lin and X. Huang, Opt. Lett. 33, 2875 (2008).

Lahoud, N.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

Leuthold, J.

M. Fujii, J. Leuthold, and W. Freude, IEEE Photon. Technol. Lett. 21, 362 (2009).
[CrossRef]

Lin, X.

X. Lin and X. Huang, Opt. Lett. 33, 2875 (2008).

Lipson, M.

Liu, L.

Z. Han, L. Liu, and E. Forsberg, Opt. Commun. 259, 690 (2006).
[CrossRef]

L. Liu, Z. Han, and S. He, Opt. Express 13, 6645 (2005).
[CrossRef]

Long, L.

Massoud, Y.

Mattiussi, G.

Ordal, M. A.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).
[CrossRef]

Pannipitiya, A.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).
[CrossRef]

Premaratne, M.

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rukhlenko, I. D.

Shakya, J.

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).
[CrossRef]

Sun, F.

Van, V.

Veronis, G.

G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, Opt. Express 14, 4494 (2006).
[CrossRef]

Ward, C. A.

Wu, M.

Xiao, Y.

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).
[CrossRef]

Zou, G.

Appl. Opt.

Appl. Phys. Lett.

G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Fujii, J. Leuthold, and W. Freude, IEEE Photon. Technol. Lett. 21, 362 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photon.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006).
[CrossRef]

Opt. Commun.

Z. Han and S. He, Opt. Commun. 278, 199 (2007).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, Opt. Commun. 259, 690 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

L. Chen, J. Shakya, and M. Lipson, Opt. Lett. 31, 2133 (2006).
[CrossRef]

X. Lin and X. Huang, Opt. Lett. 33, 2875 (2008).

Other

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic and (b) Ey field distribution of the silicon-based hybrid plasmonic waveguide structure.

Fig. 2.
Fig. 2.

Schematic of the stub type wavelength filter with one stub or double stubs (dashed line for the second stub).

Fig. 3.
Fig. 3.

Transmission of the filter with different stub lengths Lc while the stub width is fixed at (a) Wc=400nm and (b) Wc=500nm.

Fig. 4.
Fig. 4.

Ey field distributions of the filter at wavelength (a) 1542 nm and (b) 1300 nm, when Lc=550nm, Wc=500nm. In (c) the Ey field distribution in the cross section of the cavity at plane shown in (a) is given.

Fig. 5.
Fig. 5.

Radiation loss of the stub with different stub widths Wc, when the power entering the stub is set to be unit one.

Fig. 6.
Fig. 6.

Comparison of the spectral responses of single-stub and double-stub structure. The stub width is fixed at Wc=500nm, the letter d or s in the legend mark refers to double- or single-stub, and the following number refer to the stub length Lc.

Fig. 7.
Fig. 7.

Transmission of the double-stub filter with different distances between the two stubs. The parameters of each stub are fixed as: Wc=500nm, Lc=550nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=εωp2/ω(ω+jγ),

Metrics