Abstract

The feasibility of using gold nano-rings as plasmonic nano-optical tweezers is investigated. We found that at a resonant wavelength of λ=785nm, the nano-ring produces a maximum trapping potential of 32kBT on gold nanoparticles. The existence of multiple potential wells results in a very large active volume of 106nm3 for trapping the target particles. The report nano-ring design provides an effective approach for manipulating nano-objects in very low concentration into the high-field region and is well suited for integration with microfluidics for lab-on-a-chip applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription