Abstract

Optical trapping of gold nanoparticles is experimentally demonstrated using radially and azimuthally polarized beams. The transverse optical trapping stiffness of gold nanoparticles is measured. The radially polarized beam exhibits a higher trapping efficiency than the azimuthally polarized beam and the Gaussian beam. The transverse stiffness of particles with different diameters is measured experimentally and calculated via the discrete-dipole approximation method, and good agreement between theory and experiment is found.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1986).
    [CrossRef]
  2. Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
    [CrossRef]
  3. K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
    [CrossRef]
  4. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, Nano Lett. 8, 1486 (2008).
    [CrossRef]
  5. L. Jauffred, A. C. Richardson, and L. B. Oddershede, Nano Lett. 8, 3376 (2008).
    [CrossRef]
  6. L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
    [CrossRef]
  7. Y. Seol, A. E. Carpenter, and T. T. Perkins, Opt. Lett. 31, 2429 (2006).
    [CrossRef]
  8. M. J. Guffey and N. F. Scherer, Nano Lett. 10, 4302 (2010).
    [CrossRef]
  9. S. Yan and B. Yao, Phys. Rev. A. 76, 053836 (2007).
    [CrossRef]
  10. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, J. Opt. Soc. Am. B 26, 2242 (2009).
    [CrossRef]
  11. Y. Kozawa and S. Sato, Opt. Express 18, 10828 (2010).
    [CrossRef]
  12. G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
    [CrossRef]
  13. Q. Zhan, Opt. Express 12, 3377 (2004).
    [CrossRef]
  14. J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, Opt. Express 17, 8407 (2009).
    [CrossRef]
  15. A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, Proc. SPIE 8097, 809722 (2011).
    [CrossRef]
  16. L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 073110 (2010).
    [CrossRef]
  17. F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, J. Phys. Chem. C 112, 20233 (2008).
    [CrossRef]
  18. M. Dienerowitz, M. Mazilu, and K. Dholakia, J.Nanophoton. 2, 021875 (2008).
    [CrossRef]

2011 (2)

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
[CrossRef]

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, Proc. SPIE 8097, 809722 (2011).
[CrossRef]

2010 (3)

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 073110 (2010).
[CrossRef]

Y. Kozawa and S. Sato, Opt. Express 18, 10828 (2010).
[CrossRef]

M. J. Guffey and N. F. Scherer, Nano Lett. 10, 4302 (2010).
[CrossRef]

2009 (2)

2008 (4)

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, J. Phys. Chem. C 112, 20233 (2008).
[CrossRef]

M. Dienerowitz, M. Mazilu, and K. Dholakia, J.Nanophoton. 2, 021875 (2008).
[CrossRef]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, Nano Lett. 8, 1486 (2008).
[CrossRef]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, Nano Lett. 8, 3376 (2008).
[CrossRef]

2007 (1)

S. Yan and B. Yao, Phys. Rev. A. 76, 053836 (2007).
[CrossRef]

2006 (2)

Y. Seol, A. E. Carpenter, and T. T. Perkins, Opt. Lett. 31, 2429 (2006).
[CrossRef]

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

2004 (2)

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Q. Zhan, Opt. Express 12, 3377 (2004).
[CrossRef]

1994 (1)

1986 (1)

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, Nano Lett. 8, 1486 (2008).
[CrossRef]

Alt, W.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Ashkin, A.

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, Nano Lett. 8, 1486 (2008).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, Nano Lett. 8, 1486 (2008).
[CrossRef]

Carpenter, A. E.

Chen, J.

Chizhik, A. I.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, Proc. SPIE 8097, 809722 (2011).
[CrossRef]

Chizhik, A. M.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, Proc. SPIE 8097, 809722 (2011).
[CrossRef]

Chu, S.

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, J.Nanophoton. 2, 021875 (2008).
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, J.Nanophoton. 2, 021875 (2008).
[CrossRef]

Ding, J.

Dotsenko, I.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Dziedzic, J. M.

Fan, Y.-X.

Farster, L.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Guffey, M. J.

M. J. Guffey and N. F. Scherer, Nano Lett. 10, 4302 (2010).
[CrossRef]

Guo, H.

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
[CrossRef]

Huang, L.

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
[CrossRef]

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 073110 (2010).
[CrossRef]

Huss, A.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, Proc. SPIE 8097, 809722 (2011).
[CrossRef]

Jäger, R.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, Proc. SPIE 8097, 809722 (2011).
[CrossRef]

Jauffred, L.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, Nano Lett. 8, 3376 (2008).
[CrossRef]

Jia, D.

Khudaverdyan, M.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Kozawa, Y.

Lei, M.

Li, Z.

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
[CrossRef]

Li, Z.-Y.

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
[CrossRef]

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 073110 (2010).
[CrossRef]

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, J. Phys. Chem. C 112, 20233 (2008).
[CrossRef]

Ling, L.

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
[CrossRef]

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 073110 (2010).
[CrossRef]

Liu, Y.

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, J. Phys. Chem. C 112, 20233 (2008).
[CrossRef]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, J.Nanophoton. 2, 021875 (2008).
[CrossRef]

Meixner, A. J.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, Proc. SPIE 8097, 809722 (2011).
[CrossRef]

Meschede, D.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Miroshnychenko, Y.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Oddershede, L. B.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, Nano Lett. 8, 1486 (2008).
[CrossRef]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, Nano Lett. 8, 3376 (2008).
[CrossRef]

Peng, F.

Perkins, T. T.

Petrov, D.

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Qin, J.-Q.

Rauschenbeutel, A.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Richardson, A. C.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, Nano Lett. 8, 3376 (2008).
[CrossRef]

Sato, S.

Scherer, N. F.

M. J. Guffey and N. F. Scherer, Nano Lett. 10, 4302 (2010).
[CrossRef]

Schrader, D.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Seol, Y.

Singh, G. P.

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Svoboda, K.

Volpe, G.

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Wang, H.-T.

Wang, X.-L.

Xia, Y.

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, J. Phys. Chem. C 112, 20233 (2008).
[CrossRef]

Yan, S.

Yao, B.

Zhan, Q.

Zhao, W.

Zhou, F.

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
[CrossRef]

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 073110 (2010).
[CrossRef]

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, J. Phys. Chem. C 112, 20233 (2008).
[CrossRef]

J. Appl. Phys. (2)

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z.-Y. Li, J. Appl. Phys. 109, 083116 (2011).
[CrossRef]

L. Ling, F. Zhou, L. Huang, and Z.-Y. Li, J. Appl. Phys. 108, 073110 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

F. Zhou, Z.-Y. Li, Y. Liu, and Y. Xia, J. Phys. Chem. C 112, 20233 (2008).
[CrossRef]

J.Nanophoton. (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, J.Nanophoton. 2, 021875 (2008).
[CrossRef]

Nano Lett. (3)

M. J. Guffey and N. F. Scherer, Nano Lett. 10, 4302 (2010).
[CrossRef]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, Nano Lett. 8, 1486 (2008).
[CrossRef]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, Nano Lett. 8, 3376 (2008).
[CrossRef]

Nature (1)

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Farster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, Nature 442, 151 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A. (1)

S. Yan and B. Yao, Phys. Rev. A. 76, 053836 (2007).
[CrossRef]

Proc. SPIE (2)

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, Proc. SPIE 8097, 809722 (2011).
[CrossRef]

G. Volpe, G. P. Singh, and D. Petrov, Proc. SPIE 5514, 283 (2004).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (321 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the optical trapping setup. The trapping laser was introduced into the polarized beam converter after expanding and focused to form a trap. The trapped particles are imaged by CCD, and the Brownian motion is detected by PSD. (b) The experimentally generated radially and azimuthally polarized beams. The first column shows the isotropic intensity profiles of the vector beams imaged by a laser beam analyzer without a polarization analyzer. The next two columns show the intensity cross-sections after inserting the polarization filter with the arrows denoting the polarization direction.

Fig. 2.
Fig. 2.

(a) Power spectra of gold particles with a diameter of 90 nm trapped by radially polarized, azimuthally polarized, and Gaussian beams. The laser powers at the trap are about 220 mW, 200 mW, and 180 mW for the radially polarized, the azimuthally polarized, and the Gaussian beam, respectively. The stiffness in the figure is normalized by laser power. (b) Transverse trapping stiffness as a function of laser power for 90 nm gold particles trapped by radially and azimuthally polarized beams, respectively.

Fig. 3.
Fig. 3.

(a) Measured power spectra of 90 nm-diameter gold nanoparticles (circle-dotted curve) and 50 nm-diameter gold nanoparticles (square-dotted curve) trapped by the radially polarized beam. (b) Calculated trapping forces for 90 nm (circle-dotted curve) and 50 nm (square-dotted curve) gold sphere trapped by the radially polarized beam. The trapping stiffness is obtained by fitting the linear part of trapping force versus relative displacement of the particle.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

m2xt2+γxt+κx=Ff(t).

Metrics