Abstract

In this Letter, a linear scheme to generate polarization entanglement at 1.5 μm based on commercial polarization maintained dispersion shifted fiber (PM-DSF) is proposed. The birefringent walk-off effect of the pulsed pump light in the PM-DSF provides an effective way to suppress the vector scattering processes of spontaneous four-wave mixing. A 90 deg offset of fiber polarization axes is introduced at the midpoint of the fiber to realize the quantum superposition of the two correlated photon states generated by the two scalar processes on different fiber polarization axes, leading to polarization entanglement generation. Experiments of the indistinguishable property on single-side and two-photon interference in two nonorthogonal polarization bases are demonstrated. A two-photon interference fringe visibility of 89±3% is achieved without subtracting the background counts, demonstrating its great potential in developing highly a efficient and stable fiber based polarization-entangled quantum light source at the optical communication band.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
    [CrossRef]
  2. N. Gisin and R. Thew, Nature Photon. 1, 165 (2007).
    [CrossRef]
  3. L. M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010).
    [CrossRef]
  4. J. L. O’Brien, A. Furusawa, and J. A. Vuckovic, Nature Photon. 3, 687 (2009).
    [CrossRef]
  5. E. Brainis, Phys. Rev. A 79, 023840 (2009).
    [CrossRef]
  6. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef]
  7. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, Opt. Lett. 35, 802 (2010).
    [CrossRef]
  8. J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, New J. Phys. 9, 289 (2007).
    [CrossRef]
  9. H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
    [CrossRef]
  10. Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, Opt. Lett. 34, 2706 (2009).
    [CrossRef]

2010 (2)

2009 (3)

Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, Opt. Lett. 34, 2706 (2009).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. A. Vuckovic, Nature Photon. 3, 687 (2009).
[CrossRef]

E. Brainis, Phys. Rev. A 79, 023840 (2009).
[CrossRef]

2007 (2)

N. Gisin and R. Thew, Nature Photon. 1, 165 (2007).
[CrossRef]

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, New J. Phys. 9, 289 (2007).
[CrossRef]

2005 (1)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef]

2004 (1)

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
[CrossRef]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Altepeter, J. B.

Brainis, E.

E. Brainis, Phys. Rev. A 79, 023840 (2009).
[CrossRef]

Chen, J.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, New J. Phys. 9, 289 (2007).
[CrossRef]

Cheng, J.

Duan, L. M.

L. M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010).
[CrossRef]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. A. Vuckovic, Nature Photon. 3, 687 (2009).
[CrossRef]

Gisin, N.

N. Gisin and R. Thew, Nature Photon. 1, 165 (2007).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Hall, M. A.

Huang, Y.

Inoue, K.

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Kumar, P.

M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, Opt. Lett. 35, 802 (2010).
[CrossRef]

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, New J. Phys. 9, 289 (2007).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef]

Lee, K. F.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, New J. Phys. 9, 289 (2007).
[CrossRef]

Li, X.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, New J. Phys. 9, 289 (2007).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef]

Medic, M.

Monroe, C.

L. M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010).
[CrossRef]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. A. Vuckovic, Nature Photon. 3, 687 (2009).
[CrossRef]

Patel, M.

Peng, J.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef]

Takesue, H.

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
[CrossRef]

Thew, R.

N. Gisin and R. Thew, Nature Photon. 1, 165 (2007).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Voss, P. L.

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, New J. Phys. 9, 289 (2007).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef]

Vuckovic, J. A.

J. L. O’Brien, A. Furusawa, and J. A. Vuckovic, Nature Photon. 3, 687 (2009).
[CrossRef]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Zhang, W.

Zhou, Q.

Nature Photon. (2)

N. Gisin and R. Thew, Nature Photon. 1, 165 (2007).
[CrossRef]

J. L. O’Brien, A. Furusawa, and J. A. Vuckovic, Nature Photon. 3, 687 (2009).
[CrossRef]

New J. Phys. (1)

J. Chen, K. F. Lee, X. Li, P. L. Voss, and P. Kumar, New J. Phys. 9, 289 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

H. Takesue and K. Inoue, Phys. Rev. A 70, 031802 (2004).
[CrossRef]

E. Brainis, Phys. Rev. A 79, 023840 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef]

Rev. Mod. Phys. (2)

L. M. Duan and C. Monroe, Rev. Mod. Phys. 82, 1209 (2010).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Scheme of polarization entangled photon pair generation in the PM-DSF.

Fig. 2.
Fig. 2.

PFSD of generated photon pairs by the scalar and the vector scattering processes. In the main figure, fHH+fVV; in the inset, fHV+fVH.

Fig. 3.
Fig. 3.

Experimental setup.

Fig. 4.
Fig. 4.

(a) Idler side photon count rates under different θi; (b) Coincidence counts under different θi.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

fHH=(γPHLs)2sinc2[(β2Ω2+2γPH)Ls2],fVV=(γPVLs)2sinc2[(β2Ω2+2γPV)Ls2],
fHV=49(γPHPVLv)2×sinc2[(Δβ1Ω+β2Ω2+γ(PH+PV))Lv2],fVH=49(γPHPVLv)2×sinc2[(Δβ1Ωβ2Ω2γ(PH+PV))Lv2],

Metrics