Abstract

We present a simple and efficient concept for the generation of ultrashort infrared pulses with passively stabilized carrier-envelope phase at 100 kHz repetition rate. The central wavelength is tunable between 1.6 and 2.0 µm with pulse durations between 8.2 and 12.8 fs, corresponding to a sub-two-cycle duration over the whole tuning range. Pulse energies of up to 145 nJ are achieved. As a first application we measure the high nonlinearity of multiphoton photoemission from a nanoscale metal tip.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Manzoni, G. Cerullo, and S. De Silvestri, Opt. Lett. 29, 2668 (2004).
    [CrossRef]
  2. C. Vozzi, G. Cirmi, C. Manzoni, E. Benedetti, F. Calegari, G. Sansone, S. Stagira, O. Svelto, S. De Silvestri, M. Nisoli, and G. Cerullo, Opt. Express 14, 10109 (2006).
    [CrossRef]
  3. X. Gu, G. Marcus, Y. Deng, T. Metzger, C. Teisset, N. Ishii, T. Fuji, A. Baltuska, R. Butkus, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, R. Kienberger, and F. Krausz, Opt. Express 17, 62 (2009).
    [CrossRef]
  4. O. D. Mücke, D. Sidorov, P. Dombi, A. Pugžlys, A. Baltuška, S. Ališauskas, V. Smilgevicius, J. Pocius, L. Giniunas, R. Danielius, and N. Forget, Opt. Lett. 34, 118 (2009).
    [CrossRef]
  5. C. Li, D. Wang, L. Song, J. Liu, P. Liu, C. Xu, Y. Leng, R. Li, and Z. Xu, Opt. Express 19, 6783 (2011).
    [CrossRef]
  6. B. E. Schmidt, A. D. Shiner, P. Lassonde, J.-C. Kieffer, P. B. Corkum, D. M. Villeneuve, and F. Légaré, Opt. Express 19, 6858 (2011).
    [CrossRef]
  7. K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, C.-J. Lai, G. Cirmi, A. Sell, E. Granados, P. Keathley, and F. X. Kärtner, Opt. Express 19, 15538 (2011).
    [CrossRef]
  8. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
    [CrossRef]
  9. G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, Laser Photon. Rev. 5, 323 (2011).
    [CrossRef]
  10. M. Krüger, M. Schenk, and P. Hommelhoff, Nature 78, 475 (2011).
    [CrossRef]
  11. C. Heese, L. Gallmann, U. Keller, C. R. Phillips, and M. M. Fejer, Opt. Lett. 35, 2340 (2010).
    [CrossRef]
  12. A. Thai, M. Hemmer, P. K. Bates, O. Chalus, and J. Biegert, Opt. Lett. 36, 3918 (2011).
    [CrossRef]
  13. M. Bradler, C. Homann, and E. Riedle, Opt. Lett. 36, 4212 (2011).
    [CrossRef]
  14. M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
    [CrossRef]
  15. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, Opt. Lett. 27, 131 (2002).
    [CrossRef]
  16. M. Kakehata, H. Takada, Y. Kobayashi, K. Torizuka, Y. Fujihara, T. Homma, and H. Takahashi, Opt. Lett. 26, 1436 (2001).
    [CrossRef]

2011 (7)

2010 (2)

C. Heese, L. Gallmann, U. Keller, C. R. Phillips, and M. M. Fejer, Opt. Lett. 35, 2340 (2010).
[CrossRef]

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

2009 (3)

2006 (1)

2004 (1)

2002 (1)

2001 (1)

Ališauskas, S.

Arpin, P.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Baltuska, A.

Baltuška, A.

Bates, P. K.

Baum, P.

M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
[CrossRef]

Benedetti, E.

Biegert, J.

Bradler, M.

M. Bradler, C. Homann, and E. Riedle, Opt. Lett. 36, 4212 (2011).
[CrossRef]

M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
[CrossRef]

Butkus, R.

Calegari, F.

Cerullo, G.

Chalus, O.

Chen, M.-C.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Cirmi, G.

Corkum, P. B.

Danielius, R.

De Silvestri, S.

Deng, Y.

Dombi, P.

Fejer, M. M.

Forget, N.

Fu, X.

Fuji, T.

Fujihara, Y.

Gallmann, L.

Gerrity, M.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Giniunas, L.

Granados, E.

Gu, X.

Heese, C.

Hemmer, M.

Homann, C.

Homma, T.

Hommelhoff, P.

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 78, 475 (2011).
[CrossRef]

Hong, K.-H.

Huang, S.-W.

Ishii, N.

Ishizuki, H.

Kakehata, M.

Kapteyn, H. C.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Kärtner, F. X.

Keathley, P.

Keller, U.

Kieffer, J.-C.

Kienberger, R.

Kobayashi, T.

Kobayashi, Y.

Kompa, K. L.

Krausz, F.

Krüger, M.

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 78, 475 (2011).
[CrossRef]

Lai, C.-J.

Lassonde, P.

Légaré, F.

Leng, Y.

Li, C.

Li, R.

Liu, J.

Liu, P.

Manzoni, C.

Marcus, G.

Metzger, T.

Moses, J.

Motzkus, M.

Mücke, O. D.

Murnane, M. M.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Nisoli, M.

Pervak, V.

Phillips, C. R.

Pocius, J.

Popmintchev, D.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Popmintchev, T.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Proch, D.

Pugžlys, A.

Riedle, E.

M. Bradler, C. Homann, and E. Riedle, Opt. Lett. 36, 4212 (2011).
[CrossRef]

M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
[CrossRef]

Sansone, G.

Schenk, M.

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 78, 475 (2011).
[CrossRef]

Schmidt, B. E.

Seaberg, M.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Sell, A.

Shiner, A. D.

Sidorov, D.

Smilgevicius, V.

Song, L.

Stagira, S.

Svelto, O.

Taira, T.

Takada, H.

Takahashi, H.

Teisset, C.

Thai, A.

Torizuka, K.

Villeneuve, D. M.

Vozzi, C.

Wang, D.

Witte, T.

Xu, C.

Xu, Z.

Zeidler, D.

Zhang, B.

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Appl. Phys. B (1)

M. Bradler, P. Baum, and E. Riedle, Appl. Phys. B 97, 561 (2009).
[CrossRef]

Laser Photon. Rev. (1)

G. Cerullo, A. Baltuska, O. D. Mücke, and C. Vozzi, Laser Photon. Rev. 5, 323 (2011).
[CrossRef]

Nature (1)

M. Krüger, M. Schenk, and P. Hommelhoff, Nature 78, 475 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, Phys. Rev. Lett. 105, 173901 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Setup; SHG, second harmonic generation; λ/2, half wave plate; SCG, supercontinuum generation; NOPA, noncollinear optical parametric amplifier; PC, prism compressor; DFG, difference frequency generation.

Fig. 2.
Fig. 2.

Spectra and corresponding autocorrelation measurements showing the wavelength tunability of our concept while maintaining a sub-two-cycle pulse duration (Δτ: deconvolved FWHM Gaussian pulse duration).

Fig. 3.
Fig. 3.

SHG-FROG measurement of the IR output pulse. The measured and retrieved FROG trace show excellent agreement, as do the directly measured spectrum around 1.8 µm and the calculated spectrum from the SH spectrum (dashed–dotted curve). The spectral phase (dashed curve) indicates some residual chirp. Bottom right: Retrieved intensity in the time domain.

Fig. 4.
Fig. 4.

f-2f interference measurement. The right panel shows the spectrum of a single scan, the lower panel the evaluated phase. After 1.5 min. a CEP shift of π is induced by moving a wedge, which is reversed after 3 min.

Fig. 5.
Fig. 5.

Current as function of the pulse energy focused onto a tungsten tip. Inset: schematic of the multiphoton photoemission process: EF, Fermi energy; Wa, work function.

Metrics