Abstract

The behavior of electromagnetic fields near the edge of a plasmonic wedge is investigated. We study the scattering properties, field divergence, and field enhancement near an Au wedge bounded by SiO2 upon illumination by TM-polarized light using hypersingular integral equations, as a function of wavelength, wedge angle, and angle of incidence. The transverse scattered field components show a convergent behavior at wavelengths approaching the surface plasmon energy asymptote (on the corresponding flat Au-SiO2 interface), and become strongly divergent at longer wavelengths. The computed divergence is compared with Meixner’s theory and is found to be in good agreement over a restricted range of parameters.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription