Abstract

We propose a system that can perform microwave bandpass filtering and phase shifting simultaneously without redundant optical–electrical and electrical–optical conversions. The principle is based on polarization-dependant phase modulation of a broadband optical source and the variable optical carrier time shift method. A single-bandpass microwave photonic filter with a central frequency of 10.8 GHz, a 3-dB bandwidth of 670 MHz, and a 360° phase tuning range is experimentally demonstrated. The capability of our configuration to implement wideband phase shifters is also verified.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, IEEE J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  2. B. D. van Veen and K. M. Buckley, IEEE ASSP Mag. 5, 4 (1988).
    [CrossRef]
  3. J. Capmany, B. Ortega, and D. Pastor, IEEE J. Lightwave Technol. 24, 201 (2006).
    [CrossRef]
  4. X. Yi and R. A. Minasian, IEEE J. Lightwave Technol. 26, 2578 (2008).
    [CrossRef]
  5. E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
    [CrossRef]
  6. Z. Li, C. Yu, Y. Dong, L. Cheng, L. F. K. Lui, C. Lu, A. P. T. Lau, H.-Y. Tam, and P. K. A. Wai, Opt. Lett. 35, 1881 (2010).
    [CrossRef]
  7. K.-H. Lee, Y. M. Jhon, and W.-Y. Choi, Opt. Lett. 30, 702 (2005).
    [CrossRef]
  8. W. Xue, S. Sales, J. Capmany, and J. Mørk, Opt. Express 18, 6156 (2010).
    [CrossRef]
  9. X. Xue, X. Zheng, H. Zhang, and B. Zhou, Opt. Express 19, 18423 (2011).
    [CrossRef]
  10. X. Yi and R. A. Minasian, J. Lightwave Technol. 24, 4959 (2006).
    [CrossRef]
  11. F. Grassi, J. Mora, B. Ortega, and J. Capmany, Opt. Express 18, 21750 (2010).
    [CrossRef]

2011 (1)

2010 (4)

2009 (1)

J. Yao, IEEE J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

2008 (1)

X. Yi and R. A. Minasian, IEEE J. Lightwave Technol. 26, 2578 (2008).
[CrossRef]

2006 (2)

J. Capmany, B. Ortega, and D. Pastor, IEEE J. Lightwave Technol. 24, 201 (2006).
[CrossRef]

X. Yi and R. A. Minasian, J. Lightwave Technol. 24, 4959 (2006).
[CrossRef]

2005 (1)

1988 (1)

B. D. van Veen and K. M. Buckley, IEEE ASSP Mag. 5, 4 (1988).
[CrossRef]

Buckley, K. M.

B. D. van Veen and K. M. Buckley, IEEE ASSP Mag. 5, 4 (1988).
[CrossRef]

Capmany, J.

Cheng, L.

Choi, W.-Y.

Dong, Y.

Grassi, F.

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
[CrossRef]

Jhon, Y. M.

Lau, A. P. T.

Leaird, D. E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
[CrossRef]

Lee, K.-H.

Li, Z.

Lu, C.

Lui, L. F. K.

Minasian, R. A.

X. Yi and R. A. Minasian, IEEE J. Lightwave Technol. 26, 2578 (2008).
[CrossRef]

X. Yi and R. A. Minasian, J. Lightwave Technol. 24, 4959 (2006).
[CrossRef]

Mora, J.

Mørk, J.

Ortega, B.

F. Grassi, J. Mora, B. Ortega, and J. Capmany, Opt. Express 18, 21750 (2010).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, IEEE J. Lightwave Technol. 24, 201 (2006).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, IEEE J. Lightwave Technol. 24, 201 (2006).
[CrossRef]

Sales, S.

Tam, H.-Y.

van Veen, B. D.

B. D. van Veen and K. M. Buckley, IEEE ASSP Mag. 5, 4 (1988).
[CrossRef]

Wai, P. K. A.

Weiner, A. M.

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
[CrossRef]

Xue, W.

Xue, X.

Yao, J.

J. Yao, IEEE J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

Yi, X.

X. Yi and R. A. Minasian, IEEE J. Lightwave Technol. 26, 2578 (2008).
[CrossRef]

X. Yi and R. A. Minasian, J. Lightwave Technol. 24, 4959 (2006).
[CrossRef]

Yu, C.

Zhang, H.

Zheng, X.

Zhou, B.

IEEE ASSP Mag. (1)

B. D. van Veen and K. M. Buckley, IEEE ASSP Mag. 5, 4 (1988).
[CrossRef]

IEEE J. Lightwave Technol. (3)

J. Capmany, B. Ortega, and D. Pastor, IEEE J. Lightwave Technol. 24, 201 (2006).
[CrossRef]

X. Yi and R. A. Minasian, IEEE J. Lightwave Technol. 26, 2578 (2008).
[CrossRef]

J. Yao, IEEE J. Lightwave Technol. 27, 314 (2009).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, IEEE Trans. Microwave Theor. Tech. 58, 3269 (2010).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of the all-optical microwave bandpass filter and phase shifter. BOS, broadband optical source; P, polarizer; PC, polarization controller; PM, phase modulator; DGD, differential group delay element; D, dispersive element.

Fig. 2.
Fig. 2.

Illustration of the phase tuning principle. (a) Time-domain impulse response; (b) frequency-domain transfer function.

Fig. 3.
Fig. 3.

(a) Spectrum of the BOS; (b) measured amplitude; and (c) tunable phases of the RF transfer function.

Fig. 4.
Fig. 4.

(a) Output waveforms with different phases (averaged by 10); (b) optical spectra after P2.

Fig. 5.
Fig. 5.

(a) Spectrum of the BOS; (b) simulated amplitude, and (c) tunable phases of the RF transfer function.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H(ω)exp[j(Ω0Δτβ2ω2/2)]×Hb(ωωo)+exp[j(Ω0Δτ+β2ω2/2)]×Hb(ω+ωo),
Hb(ω)=12π0+N(Ω)exp[jωβ2(ΩΩ0)]dΩ.
H(ω)exp[j(ϕb+Ω0Δτ0β2ω2/2)]×Hb(ωω0)+exp[j(ϕbΩ0Δτ0+β2ω2/2)]×Hb(ω+ω0),
ϕb=Ω0δτ=πVb/Vπ.
Δω2π/(β2ΔΩ),
N(Ω)=exp[4(ΩΩ0)2/ΔΩ2],

Metrics