Abstract

An all-optical stabilization method of laser pulse energy is proposed using the optical Kerr effect (OKE). The method uses the OKE induced by a portion of the laser pulse as a power controller. The decrease (increase) in the throughput of the optical setup for OKE compensates for the increase (decrease) in pulse energy, thereby stabilizing the pulse-to-pulse fluctuation in pulse energy. The validity of this principle was proven by experiments with a femtosecond laser.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Shen, The Principles of Nonlinear Optics (Wiley, 2003).
  2. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).
  3. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006).
    [CrossRef]
  4. C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, J. Phys. Chem. 91, 2028 (1987).
    [CrossRef]
  5. Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
    [CrossRef]
  6. R. Nakamura and Y. Kanematsu, Rev. Sci. Instrum. 75, 636 (2004).
    [CrossRef]
  7. J. Herrmann, J. Opt. Soc. Am. B 11, 498 (1994).
    [CrossRef]
  8. M. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
    [CrossRef]
  9. T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004).
    [CrossRef]
  10. S. Tokita, M. Hashida, S. Masuno, S. Namba, and S. Sakabe, Opt. Express 16, 14875 (2008).
    [CrossRef]

2008 (1)

2006 (1)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006).
[CrossRef]

2004 (2)

R. Nakamura and Y. Kanematsu, Rev. Sci. Instrum. 75, 636 (2004).
[CrossRef]

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004).
[CrossRef]

2003 (1)

M. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

1995 (1)

Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
[CrossRef]

1994 (1)

1987 (1)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, J. Phys. Chem. 91, 2028 (1987).
[CrossRef]

Chang, Y. J.

Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
[CrossRef]

Cong, P.

Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
[CrossRef]

Fan, S.

M. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Gobert, O.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004).
[CrossRef]

Hashida, M.

Hell, S. W.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006).
[CrossRef]

Herrmann, J.

Jahn, R.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006).
[CrossRef]

Kalpouzos, C.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, J. Phys. Chem. 91, 2028 (1987).
[CrossRef]

Kanematsu, Y.

R. Nakamura and Y. Kanematsu, Rev. Sci. Instrum. 75, 636 (2004).
[CrossRef]

Kaplan, D.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004).
[CrossRef]

Kenney-Wallace, G. A.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, J. Phys. Chem. 91, 2028 (1987).
[CrossRef]

Legrand, F.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004).
[CrossRef]

Lotshaw, W. T.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, J. Phys. Chem. 91, 2028 (1987).
[CrossRef]

Masuno, S.

McMorrow, D.

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, J. Phys. Chem. 91, 2028 (1987).
[CrossRef]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).

Nakamura, R.

R. Nakamura and Y. Kanematsu, Rev. Sci. Instrum. 75, 636 (2004).
[CrossRef]

Namba, S.

Oksenhendler, T.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004).
[CrossRef]

Perdrix, M.

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004).
[CrossRef]

Rizzoli, S. O.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006).
[CrossRef]

Sakabe, S.

Shen, Y.

Y. Shen, The Principles of Nonlinear Optics (Wiley, 2003).

Simon, J. D.

Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
[CrossRef]

Soljacic, M.

M. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Tokita, S.

Westphal, V.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006).
[CrossRef]

Willig, K. I.

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006).
[CrossRef]

Yanik, M.

M. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

Appl. Phys. B (1)

T. Oksenhendler, F. Legrand, M. Perdrix, O. Gobert, and D. Kaplan, Appl. Phys. B 79, 933 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

M. Yanik, S. Fan, and M. Soljačić, Appl. Phys. Lett. 83, 2739 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (2)

C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, J. Phys. Chem. 91, 2028 (1987).
[CrossRef]

Y. J. Chang, P. Cong, and J. D. Simon, J. Phys. Chem. 99, 7857 (1995).
[CrossRef]

Nature (1)

K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, Nature 440, 935 (2006).
[CrossRef]

Opt. Express (1)

Rev. Sci. Instrum. (1)

R. Nakamura and Y. Kanematsu, Rev. Sci. Instrum. 75, 636 (2004).
[CrossRef]

Other (2)

Y. Shen, The Principles of Nonlinear Optics (Wiley, 2003).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic representation of the principle of the pulse stabilization method using the OKE. BS, beam splitter; VD, variable delay; HWP, half-wave plate; K, Kerr media; P, polarizer; A, analyzer. OKS is the usual optical Kerr signal pulse. OKS-R is the stabilizable pulse (see text).

Fig. 2.
Fig. 2.

Calculated dependence of IOKS-R (solid line) and R (broken line) on Iprobe. Iprobe was normalized so that IOKS-R is maximum at Iprobe=1. Note that R is determined by Igate, not Iprobe, while the horizontal axis is Iprobe in this graph.

Fig. 3.
Fig. 3.

Dependence of IOKS-R on Iprobe. Solid circles: measured dependence. Solid-line curve: calculated dependence using Eq. (2).

Fig. 4.
Fig. 4.

Pulse-to-pulse fluctuation of IOKS-R, IOKS, and Iprobe for 100 pulses. Note that the three measurements were carried out in different pulse trains, and thus no correlation can be found among them.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IOKS-R=Iprobe[1sin22θsin2(Δϕ2)]=Iprobe[1sin2(Δϕ2)],
IOKS-R=Iprobe[1sin2(kIgate)]=Iprobe[1sin2(kk2Iprobe)],

Metrics