Abstract

Employing ultrafast laser excitation and time-correlated single-photon counting, we have measured the fine-structure transfer between Rb 5P states induced by collisions with He4 buffer gas at temperatures up to 150 °C. The temperature dependence of the binary cross section agrees with earlier measurements. Our data show that the temperature dependence of the three-body rate is about the same as that of the binary rate. The three-body rate can be described as arising from the reduction of the rubidium fine-structure splitting due to nearby helium atoms.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription