Abstract

Picosecond, flat-top, deep-UV pulses are needed to generate high-brightness electron beams to efficiently drive x-ray free electron lasers. Current metal photocathodes have low efficiency and therefore require high-energy pulses, and the generation of high-energy, flat-top pulses in the deep UV is still challenging. The low efficiencies of both the harmonic generation and deep-UV pulse shapers restrict the accessible pulse energy. Moreover, the acceptance bandwidth of the harmonic generation limits the minimum rise time of the flat-top profile. We present the generation of few-hundred microjoule, picosecond, deep-UV pulses using chirp-matched sum frequency generation. This scheme combined with IR spectral manipulation is a novel approach for deep-UV pulse shaping. It permits flat-top pulses with high energy and fast rise time, highly suited for high-brightness photoelectron beam production.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kotur, T. Weinacht, B. J. Pearson, and S. Matsika, J. Chem. Phys. 130, 134311 (2009).
    [CrossRef]
  2. A. Monmayrant, B. Chatel, and B. Girard, Phys. Rev. Lett. 96, 103002 (2006).
    [CrossRef]
  3. J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
    [CrossRef]
  4. R. Ganter, ed., “SwissFEL Conceptual Design Report” (version 19), http://www.psi.ch/swissfel/CurrentSwissFELPublicationsEN/SwissFEL_CDR__v19_03.03.11-small.pdf , p. 77.
  5. A. Trisorio, C. Ruchert, and C. P. Hauri, Appl. Phys. B 105, 255 (2011).
    [CrossRef]
  6. K. Osvay and I. N. Ross, J. Opt. Soc. Am. B 13, 1431 (1996).
    [CrossRef]
  7. I. Will and G. Klemz, Opt. Express 16, 14922 (2008).
    [CrossRef]
  8. S. Cialdi, C. Vicario, M. Petrarca, and P. Musumeci, Appl. Opt. 46, 4959 (2007).
    [CrossRef]
  9. S. Cialdi, M. Petrarca, and C. Vicario, Opt. Lett. 31, 2885 (2006).
    [CrossRef]
  10. K. Hazu, T. Sekikawa, and M. Yamashuta, Opt. Lett. 32, 3318 (2007).
    [CrossRef]
  11. A. Trisorio, P. M. Paul, F. Ple, C. Ruchert, C. Vicario, and C. P. Hauri, Opt. Express 19, 20128 (2011).
    [CrossRef]
  12. G. Arisholm, J. Opt. Soc. Am. B 14, 2543 (1997).
    [CrossRef]
  13. G. Arisholm, J. Opt. Soc. Am. B 16, 117 (1999).
    [CrossRef]

2011 (2)

2009 (1)

M. Kotur, T. Weinacht, B. J. Pearson, and S. Matsika, J. Chem. Phys. 130, 134311 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

S. Cialdi, M. Petrarca, and C. Vicario, Opt. Lett. 31, 2885 (2006).
[CrossRef]

A. Monmayrant, B. Chatel, and B. Girard, Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef]

2002 (1)

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

1999 (1)

1997 (1)

1996 (1)

Arisholm, G.

Chatel, B.

A. Monmayrant, B. Chatel, and B. Girard, Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef]

Cialdi, S.

Endo, A.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Girard, B.

A. Monmayrant, B. Chatel, and B. Girard, Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef]

Hauri, C. P.

Hazu, K.

Klemz, G.

Kotur, M.

M. Kotur, T. Weinacht, B. J. Pearson, and S. Matsika, J. Chem. Phys. 130, 134311 (2009).
[CrossRef]

Matsika, S.

M. Kotur, T. Weinacht, B. J. Pearson, and S. Matsika, J. Chem. Phys. 130, 134311 (2009).
[CrossRef]

Monmayrant, A.

A. Monmayrant, B. Chatel, and B. Girard, Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef]

Musumeci, P.

Okada, Y.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Osvay, K.

Paul, P. M.

Pearson, B. J.

M. Kotur, T. Weinacht, B. J. Pearson, and S. Matsika, J. Chem. Phys. 130, 134311 (2009).
[CrossRef]

Petrarca, M.

Ple, F.

Ross, I. N.

Ruchert, C.

Sakai, F.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Sekikawa, T.

Takasago, K.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Trisorio, A.

Vicario, C.

Washio, M.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Weinacht, T.

M. Kotur, T. Weinacht, B. J. Pearson, and S. Matsika, J. Chem. Phys. 130, 134311 (2009).
[CrossRef]

Will, I.

Yada, A.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Yamashuta, M.

Yanagida, T.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Yang, J.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Yorozu, M.

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Trisorio, C. Ruchert, and C. P. Hauri, Appl. Phys. B 105, 255 (2011).
[CrossRef]

J. Appl. Phys. (1)

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, Y. Okada, K. Takasago, A. Endo, A. Yada, and M. Washio, J. Appl. Phys. 92, 1608 (2002).
[CrossRef]

J. Chem. Phys. (1)

M. Kotur, T. Weinacht, B. J. Pearson, and S. Matsika, J. Chem. Phys. 130, 134311 (2009).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Monmayrant, B. Chatel, and B. Girard, Phys. Rev. Lett. 96, 103002 (2006).
[CrossRef]

Other (1)

R. Ganter, ed., “SwissFEL Conceptual Design Report” (version 19), http://www.psi.ch/swissfel/CurrentSwissFELPublicationsEN/SwissFEL_CDR__v19_03.03.11-small.pdf , p. 77.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Sketch of the experimental setup. The SHG and SFG are BBO crystals cut at 29.2 and 44.3 deg, respectively. In the inset, the fundamental spectrum is reported.

Fig. 2.
Fig. 2.

Simulated (red dashed curves) and measured (blue solid curves) spectra for (a) chirp-unmatched and (b) chirp-matched SFG.

Fig. 3.
Fig. 3.

(a) Simulated (red dashed curves) and experimental (blue solid curves) spectra and (b) temporal intensity for the DUV flat-top pulse.

Tables (1)

Tables Icon

Table 1. Parameters for CU and CM SFG

Metrics