Abstract

We propose a highly sensitive bending sensor based on the intermodal interference properties of a strongly coupled two-dimentional waveguide array fiber (WAF). The interference resonance peaks formed by the SMF-WAF-SMF Mach–Zehnder interferometer are intrinsically the result of interference between the LP01-like supermode and other higher order supermodes, displaying supernormal sensitivity to bending in a wide curvature range. The bending sensitivity of the intermodal MZI is a quadratic function of curvature, and the resonance wavelength shift is up to 100 nm within a curvature range 010m1. The fabrication reveals briefness, and temperature response shows little impact on the bend sensing precision. The high bending sensitivity and wide sensing range can make this device a candidate for bending discrimination and measurement in widespread areas.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
    [CrossRef]
  2. I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, Opt. Express 15, 9737 (2007).
    [CrossRef]
  3. T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
    [CrossRef]
  4. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, Opt. Lett. 31, 2577 (2006).
    [CrossRef]
  5. H. Y. Choi, M. J. Kim, and B. H. Lee, Opt. Express 15, 5711 (2007).
    [CrossRef]
  6. B. H. Lee and J. J. Nishii, Opt. Lett. 23, 1624 (1998).
    [CrossRef]
  7. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
    [CrossRef]
  8. L. Jin, W. Jin, and J. Ju, J. Lightwave Technol. 27, 4884 (2009).
    [CrossRef]
  9. Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, Opt. Commun. 193, 69 (2001).
    [CrossRef]
  10. U. Ropke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, Opt. Express 15, 6894 (2007).
    [CrossRef]
  11. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, J. Lightwave Technol. 27, 1617 (2009).
    [CrossRef]
  12. G. Kweon and I. Park, J. Lightwave Technol. 17, 690 (1999).
    [CrossRef]
  13. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, Opt. Express 14, 5688 (2006).
    [CrossRef]
  14. T. Han, Y. Liu, Z. Wang, B. Zou, B. Tai, and B. Liu, Opt. Lett. 35, 2061 (2010).
    [CrossRef]

2011

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

2010

2009

2007

2006

2004

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

2003

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef]

2001

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, Opt. Commun. 193, 69 (2001).
[CrossRef]

1999

1998

Bartelt, H.

U. Ropke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, Opt. Express 15, 6894 (2007).
[CrossRef]

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

Bennion, I.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, Opt. Commun. 193, 69 (2001).
[CrossRef]

Bird, D. M.

Birks, T. A.

Chen, S.

Choi, H. Y.

Christodoulides, D. N.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef]

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

Eggleton, B. J.

Garanovich, I. L.

Han, T.

Jin, L.

Jin, W.

Ju, J.

Kim, M. J.

Kivshar, Y. S.

Knight, J. C.

Kobelke, J.

U. Ropke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, Opt. Express 15, 6894 (2007).
[CrossRef]

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

Krolikowski, W.

Kuhlmey, B. T.

Kweon, G.

Lederer, F.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef]

Lee, B. H.

Li, L.

Liu, B.

Liu, Y.

T. Han, Y. Liu, Z. Wang, B. Zou, B. Tai, and B. Liu, Opt. Lett. 35, 2061 (2010).
[CrossRef]

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, Opt. Commun. 193, 69 (2001).
[CrossRef]

Luan, F.

Moloney, J. V.

Neshev, D.

Nishii, J. J.

Nolte, S.

I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, Opt. Express 15, 9737 (2007).
[CrossRef]

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

Park, I.

Pearce, G. J.

Pertsch, T.

I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, Opt. Express 15, 9737 (2007).
[CrossRef]

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

Peschel, U.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

Peyghambarian, N.

Rao, Y. J.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

Ropke, U.

Schülzgen, A.

Schuster, K.

U. Ropke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, Opt. Express 15, 6894 (2007).
[CrossRef]

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature 424, 817 (2003).
[CrossRef]

Sukhorukov, A. A.

Szameit, A.

Tai, B.

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

Temyanko, V. L.

Tuennermann, A.

Tünnermann, A.

T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tünnermann, and F. Lederer, Phys. Rev. Lett. 93, 053901 (2004).
[CrossRef]

Unger, S.

Wang, A.

Wang, Z.

Williams, J. A. R.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, Opt. Commun. 193, 69 (2001).
[CrossRef]

Wu, D. K. C.

Zhang, L.

Y. Liu, L. Zhang, J. A. R. Williams, and I. Bennion, Opt. Commun. 193, 69 (2001).
[CrossRef]

Zhu, T.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, Opt. Commun. 284, 2849 (2011).
[CrossRef]

Zou, B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experiment installation for the measurement. The inset shows the microscope image of the 2D WAF used in our investigation.

Fig. 2.
Fig. 2.

(a) Calculated excitation coefficients of supermodes in the 2D WAF (effective refractive indices above 1.444). (b) Numerical simulation results of S at 1550 nm. For LP01 and LP02 interference, S linearly change with ρ in the range of approximately 010m1. (c) FFT spectrum of 10 cm long MZI when curvature is zero.

Fig. 3.
Fig. 3.

Transmission spectra of the MZIs under different curvatures. MZI cavity lengths are (a) 10 cm and (b) 4 cm. The dips we traced have been marked with A, B, and C.

Fig. 4.
Fig. 4.

Evolution of the measured resonance wavelength as a quadratic function of curvature. Data of dips A and B [see Fig. 3(a)] come from the spectra of 10 cm long MZI, and dip C [Fig. 3(b)] is marked on spectra of 4 cm long MZI.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,z;t)=m=1MbmE^m(x,y)eiβmzeiωt,
bm=14(E^m×H^0*+E^0*×H^m)·z^dxdy,
2πLΔn(λ,ρ)/λ=(2k+1)π,
S=dλdρ=λΔnρ/(ΔnλΔnλ).

Metrics