Abstract

Far off-resonant ultrafast and nonlinear light-matter interactions are studied using a one-dimensional atomic model. Results from a pump-probe diagnostic reveal that any higher-order nonlinear refraction is masked by ionization-induced defocusing before it becomes significant. On the other hand, we show that signatures of a higher-order nonlinearity may still be manifest via low-order harmonics of the pump center frequency. Implications for filamentation of femtosecond pulses are pointed out.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
    [CrossRef]
  2. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
    [CrossRef]
  3. P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
    [CrossRef]
  4. P. Béjot, E. Hertz, B. Lavorel, J. Kasparian, J. Wolf, and O. Faucher, Opt. Lett. 36, 828 (2011).
    [CrossRef]
  5. P. Béjot and J. Kasparian, Opt. Lett. 36, 4812 (2011).
    [CrossRef]
  6. C. Bree, A. Demircan, and G. Steinmeyer, Phys. Rev. Lett. 106, 183902 (2011).
    [CrossRef]
  7. M. Kolesik, E. M. Wright, and J. V. Moloney, Opt. Lett. 35, 2550 (2010).
    [CrossRef]
  8. P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
    [CrossRef]
  9. O. Kosareva, J. Daigle, N. Panov, T. Wang, S. Hosseini, S. Yuan, G. Roy, V. Makarov, and S. Leang Chin, Opt. Lett. 36, 1035 (2011).
    [CrossRef]
  10. J. K. Wahlstrand, Y. H. Cheng, Y. H. Chen, and H. M. Milchberg, Phys. Rev. Lett. 107, 103901 (2011).
    [CrossRef]
  11. A. Teleki, E. M. Wright, and M. Kolesik, Phys. Rev. A 82, 065801 (2010).
    [CrossRef]
  12. E. A. Volkova, A. M. Popov, and O. V. Tikhonova, JETP Lett. 94, 519 (2011).
    [CrossRef]
  13. M. Nurhuda, A. Suda, and K. Midorikawa, New J. Phys. 10, 053006 (2008).
    [CrossRef]
  14. J. Brown, A. Lotti, A. Teleki, and M. Kolesik, Phys. Rev. A 84, 063424 (2011).
    [CrossRef]

2011 (8)

P. Béjot, E. Hertz, B. Lavorel, J. Kasparian, J. Wolf, and O. Faucher, Opt. Lett. 36, 828 (2011).
[CrossRef]

P. Béjot and J. Kasparian, Opt. Lett. 36, 4812 (2011).
[CrossRef]

C. Bree, A. Demircan, and G. Steinmeyer, Phys. Rev. Lett. 106, 183902 (2011).
[CrossRef]

P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
[CrossRef]

O. Kosareva, J. Daigle, N. Panov, T. Wang, S. Hosseini, S. Yuan, G. Roy, V. Makarov, and S. Leang Chin, Opt. Lett. 36, 1035 (2011).
[CrossRef]

J. K. Wahlstrand, Y. H. Cheng, Y. H. Chen, and H. M. Milchberg, Phys. Rev. Lett. 107, 103901 (2011).
[CrossRef]

E. A. Volkova, A. M. Popov, and O. V. Tikhonova, JETP Lett. 94, 519 (2011).
[CrossRef]

J. Brown, A. Lotti, A. Teleki, and M. Kolesik, Phys. Rev. A 84, 063424 (2011).
[CrossRef]

2010 (4)

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

A. Teleki, E. M. Wright, and M. Kolesik, Phys. Rev. A 82, 065801 (2010).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, Opt. Lett. 35, 2550 (2010).
[CrossRef]

2009 (1)

2008 (1)

M. Nurhuda, A. Suda, and K. Midorikawa, New J. Phys. 10, 053006 (2008).
[CrossRef]

Béjot, P.

P. Béjot, E. Hertz, B. Lavorel, J. Kasparian, J. Wolf, and O. Faucher, Opt. Lett. 36, 828 (2011).
[CrossRef]

P. Béjot and J. Kasparian, Opt. Lett. 36, 4812 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Bree, C.

C. Bree, A. Demircan, and G. Steinmeyer, Phys. Rev. Lett. 106, 183902 (2011).
[CrossRef]

Brown, J.

J. Brown, A. Lotti, A. Teleki, and M. Kolesik, Phys. Rev. A 84, 063424 (2011).
[CrossRef]

Chen, Y. H.

J. K. Wahlstrand, Y. H. Cheng, Y. H. Chen, and H. M. Milchberg, Phys. Rev. Lett. 107, 103901 (2011).
[CrossRef]

Cheng, Y. H.

J. K. Wahlstrand, Y. H. Cheng, Y. H. Chen, and H. M. Milchberg, Phys. Rev. Lett. 107, 103901 (2011).
[CrossRef]

Daigle, J.

Demircan, A.

C. Bree, A. Demircan, and G. Steinmeyer, Phys. Rev. Lett. 106, 183902 (2011).
[CrossRef]

Faucher, O.

Henin, S.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Hertz, E.

Hosseini, S.

Kasparian, J.

P. Béjot, E. Hertz, B. Lavorel, J. Kasparian, J. Wolf, and O. Faucher, Opt. Lett. 36, 828 (2011).
[CrossRef]

P. Béjot and J. Kasparian, Opt. Lett. 36, 4812 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Kolesik, M.

P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
[CrossRef]

J. Brown, A. Lotti, A. Teleki, and M. Kolesik, Phys. Rev. A 84, 063424 (2011).
[CrossRef]

A. Teleki, E. M. Wright, and M. Kolesik, Phys. Rev. A 82, 065801 (2010).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, Opt. Lett. 35, 2550 (2010).
[CrossRef]

Kosareva, O.

Lavorel, B.

Leang Chin, S.

Loriot, V.

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009).
[CrossRef]

Lotti, A.

J. Brown, A. Lotti, A. Teleki, and M. Kolesik, Phys. Rev. A 84, 063424 (2011).
[CrossRef]

Makarov, V.

Midorikawa, K.

M. Nurhuda, A. Suda, and K. Midorikawa, New J. Phys. 10, 053006 (2008).
[CrossRef]

Milchberg, H. M.

J. K. Wahlstrand, Y. H. Cheng, Y. H. Chen, and H. M. Milchberg, Phys. Rev. Lett. 107, 103901 (2011).
[CrossRef]

Moloney, J. V.

P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, Opt. Lett. 35, 2550 (2010).
[CrossRef]

Nurhuda, M.

M. Nurhuda, A. Suda, and K. Midorikawa, New J. Phys. 10, 053006 (2008).
[CrossRef]

Panov, N.

Polynkin, P.

P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
[CrossRef]

Popov, A. M.

E. A. Volkova, A. M. Popov, and O. V. Tikhonova, JETP Lett. 94, 519 (2011).
[CrossRef]

Roy, G.

Steinmeyer, G.

C. Bree, A. Demircan, and G. Steinmeyer, Phys. Rev. Lett. 106, 183902 (2011).
[CrossRef]

Suda, A.

M. Nurhuda, A. Suda, and K. Midorikawa, New J. Phys. 10, 053006 (2008).
[CrossRef]

Teleki, A.

J. Brown, A. Lotti, A. Teleki, and M. Kolesik, Phys. Rev. A 84, 063424 (2011).
[CrossRef]

A. Teleki, E. M. Wright, and M. Kolesik, Phys. Rev. A 82, 065801 (2010).
[CrossRef]

Tikhonova, O. V.

E. A. Volkova, A. M. Popov, and O. V. Tikhonova, JETP Lett. 94, 519 (2011).
[CrossRef]

Vieillard, T.

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Volkova, E. A.

E. A. Volkova, A. M. Popov, and O. V. Tikhonova, JETP Lett. 94, 519 (2011).
[CrossRef]

Wahlstrand, J. K.

J. K. Wahlstrand, Y. H. Cheng, Y. H. Chen, and H. M. Milchberg, Phys. Rev. Lett. 107, 103901 (2011).
[CrossRef]

Wang, T.

Wolf, J.

P. Béjot, E. Hertz, B. Lavorel, J. Kasparian, J. Wolf, and O. Faucher, Opt. Lett. 36, 828 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Wright, E. M.

P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
[CrossRef]

A. Teleki, E. M. Wright, and M. Kolesik, Phys. Rev. A 82, 065801 (2010).
[CrossRef]

M. Kolesik, E. M. Wright, and J. V. Moloney, Opt. Lett. 35, 2550 (2010).
[CrossRef]

Yuan, S.

JETP Lett. (1)

E. A. Volkova, A. M. Popov, and O. V. Tikhonova, JETP Lett. 94, 519 (2011).
[CrossRef]

New J. Phys. (1)

M. Nurhuda, A. Suda, and K. Midorikawa, New J. Phys. 10, 053006 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (2)

J. Brown, A. Lotti, A. Teleki, and M. Kolesik, Phys. Rev. A 84, 063424 (2011).
[CrossRef]

A. Teleki, E. M. Wright, and M. Kolesik, Phys. Rev. A 82, 065801 (2010).
[CrossRef]

Phys. Rev. Lett. (4)

J. K. Wahlstrand, Y. H. Cheng, Y. H. Chen, and H. M. Milchberg, Phys. Rev. Lett. 107, 103901 (2011).
[CrossRef]

P. Polynkin, M. Kolesik, E. M. Wright, and J. V. Moloney, Phys. Rev. Lett. 106, 153902 (2011).
[CrossRef]

C. Bree, A. Demircan, and G. Steinmeyer, Phys. Rev. Lett. 106, 183902 (2011).
[CrossRef]

P. Béjot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J. Wolf, Phys. Rev. Lett. 104, 103903 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Electric field of the pump-probe waveform. The probe (λ=450nm) appears as a weak background with the duration extending before and after the much stronger pump pulse (λ=800nm).

Fig. 2.
Fig. 2.

Log-scale spectrum of the nonlinear current, log10(|FT{J(t)}|2), with the inset showing its high-harmonic extent. The effective susceptibility is extracted from the vicinity of the fundamental probe frequency marked by a rectangle. Another interesting quantity is the ratio between the third- and fundamental-frequency powers indicated by the arrow.

Fig. 3.
Fig. 3.

Qualitative schematics of the effective time-dependent susceptibility (right) in a system with an instantaneous HOKE-like nonlinearity (left). Bat-ear features appear at both the leading and the trailing edge of the pump pulse for a sufficiently high intensity.

Fig. 4.
Fig. 4.

The effective time-dependent susceptibility experienced by the probe at lower (left) and higher (right) pump intensities. Data shown for the ground-state energy of Eg=10eV. The same qualitative behavior is observed for other Eg values. Labels (Kerr, free electrons) indicate main contributing effects.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Jpr(t)J(Epump,Epr)J(Epump,0)δJδEprEpr.
Δχ(t)Pfilt(t)/Epr(t).

Metrics