Abstract

Diffractive arrays of silver nanocylinders are used to increase the radiative efficiency of InGaN/GaN quantum wells emitting at near-green wavelengths. Large enhancements in luminescence intensity (up to a factor of nearly 5) are measured when the array period exceeds the emission wavelength in the semiconductor material. The experimental results and related numerical simulations indicate that the underlying mechanism is a strong resonant coupling between the light-emitting excitons in the quantum wells and the plasmonic lattice resonances of the arrays. These excitations are particularly well suited to light-emission-efficiency enhancement, compared to localized surface plasmon resonances at similar wavelengths, due to their larger scattering efficiency and larger spatial extension across the sample area.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription