Abstract

Infrared (IR) Earth thermal tracking is a viable option for optical communications to distant planet and outer-planetary missions. However, blurring due to finite receiver aperture size distorts IR Earth images in the presence of Earth’s nonuniform thermal emission and limits its applicability. We demonstrate a deconvolution algorithm that can overcome this limitation and reduce the error from blurring to a negligible level. The algorithm is applied successfully to Earth thermal images taken by the Mars Odyssey spacecraft. With the solution to this critical issue, IR Earth tracking is established as a viable means for distant planet and outer-planetary optical communications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, and K. Quirk, IPN Progress Report 42-183 (2010).
  2. C. C. Chen, M. Jeganathan, and J. R. Lesh, Proc. SPIE 1417, 240 (1991).
    [CrossRef]
  3. H. Hemmati, Y. Chen, S. Lee, and G. G. Ortiz, in LEOS Summer Topical Meetings (IEEE, 2005), pp. 27–28.
  4. S. Lee, G. G. Ortiz, W. T. Roberts, and J. W. Alexander, IPN Progress Report 42-155 (2003).
  5. This key implementation obstacle was first raised in a private communication by C. C. Chen, an author of [2], and was addressed and presented very preliminarily at Phononics West conference. Y. Chen, G. G. Ortiz, H. Hemmati, and S. Lee, Proc. SPIE 6105, 61050E (2006).
  6. W. K. Pratt, Digital Image Processing (Wiley, 2001), Chapt. 15.
  7. http://mars.jpl.nasa.gov/odyssey/ .

2006 (1)

This key implementation obstacle was first raised in a private communication by C. C. Chen, an author of [2], and was addressed and presented very preliminarily at Phononics West conference. Y. Chen, G. G. Ortiz, H. Hemmati, and S. Lee, Proc. SPIE 6105, 61050E (2006).

1991 (1)

C. C. Chen, M. Jeganathan, and J. R. Lesh, Proc. SPIE 1417, 240 (1991).
[CrossRef]

Alexander, J. W.

S. Lee, G. G. Ortiz, W. T. Roberts, and J. W. Alexander, IPN Progress Report 42-155 (2003).

Birnbaum, K.

A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, and K. Quirk, IPN Progress Report 42-183 (2010).

Biswas, A.

A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, and K. Quirk, IPN Progress Report 42-183 (2010).

Chen, C. C.

C. C. Chen, M. Jeganathan, and J. R. Lesh, Proc. SPIE 1417, 240 (1991).
[CrossRef]

Chen, Y.

This key implementation obstacle was first raised in a private communication by C. C. Chen, an author of [2], and was addressed and presented very preliminarily at Phononics West conference. Y. Chen, G. G. Ortiz, H. Hemmati, and S. Lee, Proc. SPIE 6105, 61050E (2006).

H. Hemmati, Y. Chen, S. Lee, and G. G. Ortiz, in LEOS Summer Topical Meetings (IEEE, 2005), pp. 27–28.

Hemmati, H.

This key implementation obstacle was first raised in a private communication by C. C. Chen, an author of [2], and was addressed and presented very preliminarily at Phononics West conference. Y. Chen, G. G. Ortiz, H. Hemmati, and S. Lee, Proc. SPIE 6105, 61050E (2006).

H. Hemmati, Y. Chen, S. Lee, and G. G. Ortiz, in LEOS Summer Topical Meetings (IEEE, 2005), pp. 27–28.

A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, and K. Quirk, IPN Progress Report 42-183 (2010).

Jeganathan, M.

C. C. Chen, M. Jeganathan, and J. R. Lesh, Proc. SPIE 1417, 240 (1991).
[CrossRef]

Lee, S.

This key implementation obstacle was first raised in a private communication by C. C. Chen, an author of [2], and was addressed and presented very preliminarily at Phononics West conference. Y. Chen, G. G. Ortiz, H. Hemmati, and S. Lee, Proc. SPIE 6105, 61050E (2006).

H. Hemmati, Y. Chen, S. Lee, and G. G. Ortiz, in LEOS Summer Topical Meetings (IEEE, 2005), pp. 27–28.

S. Lee, G. G. Ortiz, W. T. Roberts, and J. W. Alexander, IPN Progress Report 42-155 (2003).

Lesh, J. R.

C. C. Chen, M. Jeganathan, and J. R. Lesh, Proc. SPIE 1417, 240 (1991).
[CrossRef]

Moision, B.

A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, and K. Quirk, IPN Progress Report 42-183 (2010).

Ortiz, G. G.

This key implementation obstacle was first raised in a private communication by C. C. Chen, an author of [2], and was addressed and presented very preliminarily at Phononics West conference. Y. Chen, G. G. Ortiz, H. Hemmati, and S. Lee, Proc. SPIE 6105, 61050E (2006).

S. Lee, G. G. Ortiz, W. T. Roberts, and J. W. Alexander, IPN Progress Report 42-155 (2003).

H. Hemmati, Y. Chen, S. Lee, and G. G. Ortiz, in LEOS Summer Topical Meetings (IEEE, 2005), pp. 27–28.

Piazzolla, S.

A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, and K. Quirk, IPN Progress Report 42-183 (2010).

Pratt, W. K.

W. K. Pratt, Digital Image Processing (Wiley, 2001), Chapt. 15.

Quirk, K.

A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, and K. Quirk, IPN Progress Report 42-183 (2010).

Roberts, W. T.

S. Lee, G. G. Ortiz, W. T. Roberts, and J. W. Alexander, IPN Progress Report 42-155 (2003).

Proc. SPIE (2)

C. C. Chen, M. Jeganathan, and J. R. Lesh, Proc. SPIE 1417, 240 (1991).
[CrossRef]

This key implementation obstacle was first raised in a private communication by C. C. Chen, an author of [2], and was addressed and presented very preliminarily at Phononics West conference. Y. Chen, G. G. Ortiz, H. Hemmati, and S. Lee, Proc. SPIE 6105, 61050E (2006).

Other (5)

W. K. Pratt, Digital Image Processing (Wiley, 2001), Chapt. 15.

http://mars.jpl.nasa.gov/odyssey/ .

H. Hemmati, Y. Chen, S. Lee, and G. G. Ortiz, in LEOS Summer Topical Meetings (IEEE, 2005), pp. 27–28.

S. Lee, G. G. Ortiz, W. T. Roberts, and J. W. Alexander, IPN Progress Report 42-155 (2003).

A. Biswas, H. Hemmati, S. Piazzolla, B. Moision, K. Birnbaum, and K. Quirk, IPN Progress Report 42-183 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Visible Earth image (left) compared with the thermal image in the 813μm (right) taken by the Mars Odyssey spacecraft at 0.02AU through the Earth atmosphere.

Fig. 2.
Fig. 2.

Generic schematic of optics for IR Earth tracking.

Fig. 3.
Fig. 3.

THEMIS IR image at 10.21μm acquired by Mars Odyssey spacecraft in 2001.

Fig. 4.
Fig. 4.

Evolution of blurred IR Earth images as a function of distance to Earth in astronomical units at 10.21μm; angular resolutions vary with distance in order to cover Earth images within the focal plane array with varying focal length.

Fig. 5.
Fig. 5.

IR image profiles at cross sections, blurred compared with the unblurred at 10.21μm. The distortions at other wavelengths, not shown, are qualitatively similar.

Fig. 6.
Fig. 6.

IR images acquired by the Mars Odyssey spacecraft within the 813μm band with 264μrad/pixel; the top row is the original images and the bottom row is the edges detected.

Fig. 7.
Fig. 7.

Centroid edge detection errors of Earth images; the blue squared, red triangle, and green open circled curves represent the errors of no blurring, blurred images, and blurred images recovered by deconvolution, respectively.

Fig. 8.
Fig. 8.

THEMIS IR images at 1AU blurred by 30cm telescope; the total detector area is 40×40 pixels and 5.3μrad/pixel.

Fig. 9.
Fig. 9.

Recovery of blurred Earth images by deconvolution.

Metrics