Abstract

A photonic approach to the simultaneous measurement of the frequency, pulse amplitude (PA), pulse width (PW), and time of arrival (TOA) of an unknown pulsed microwave signal is proposed and demonstrated. The measurement is performed based on optical carrier-suppressed modulation, complementary optical filtering, low-speed photodetection, and electrical signal processing. A proof-of-concept experiment is carried out. A frequency measurement range of 2–11 GHz with a measurement error for frequency, PA, PW, and TOA within ±0.1GHz, ±0.05V, ±1ns, and ±0.16ns is achieved.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Y. Tsui, Microwave Receivers with Electronic Warfare Applications (Wiley, New York, 1986), Chap. 3.
  2. L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
    [CrossRef]
  3. J. Niu, S. N. Fu, K. Xu, J. Q. Zhou, S. Aditya, J. Wu, P. Shum, and J. T. Lin, J. Lightwave Technol. 29, 78 (2011).
    [CrossRef]
  4. X. H. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).
  5. H. Chi, X. H. Zou, and J. P. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
    [CrossRef]
  6. M. V. Drummond, P. Monteiro, and R. N. Nogueira, Opt. Express 17, 5433 (2009).
    [CrossRef]
  7. M. Attygalle and D. B. Hunter, IEEE Photon. Technol. Lett. 21, 206 (2009).
    [CrossRef]
  8. L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009).
    [CrossRef]
  9. J. Q. Zhou, S. N. Fu, P. P. Shum, S. Aditya, L. Xia, J. Q. Li, X. Q. Sun, and K. Xu, Opt. Express 17, 7217 (2009).
    [CrossRef]
  10. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, Opt. Express 17, 22983 (2009).
    [CrossRef]
  11. Y. Park, M. Scaffardi, L. Poti, and J. Azana, Opt. Express 18, 6220 (2010).
    [CrossRef]
  12. S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
    [CrossRef]

2011 (1)

2010 (2)

Y. Park, M. Scaffardi, L. Poti, and J. Azana, Opt. Express 18, 6220 (2010).
[CrossRef]

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
[CrossRef]

2009 (6)

2008 (1)

H. Chi, X. H. Zou, and J. P. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

2006 (1)

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Aditya, S.

Attygalle, M.

M. Attygalle and D. B. Hunter, IEEE Photon. Technol. Lett. 21, 206 (2009).
[CrossRef]

Azana, J.

Bui, L. A.

Chi, H.

X. H. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).

H. Chi, X. H. Zou, and J. P. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

Drummond, M. V.

Eggleton, B. J.

Emami, H.

Fu, S. N.

Hunter, D. B.

M. Attygalle and D. B. Hunter, IEEE Photon. Technol. Lett. 21, 206 (2009).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Li, J. Q.

Lin, J. T.

Mitchell, A.

Monteiro, P.

Nguyen, L. V. T.

L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

Niu, J.

Nogueira, R. N.

Pan, S. L.

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
[CrossRef]

Park, Y.

Pelusi, M. D.

Poti, L.

Sarkhosh, N.

Scaffardi, M.

Shum, P.

Shum, P. P.

Sun, X. Q.

Tsui, J. B. Y.

J. B. Y. Tsui, Microwave Receivers with Electronic Warfare Applications (Wiley, New York, 1986), Chap. 3.

Vo, T. D.

Wu, J.

Xia, L.

Xu, K.

Yao, J. P.

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
[CrossRef]

X. H. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).

H. Chi, X. H. Zou, and J. P. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

Zhou, J. Q.

Zou, X. H.

X. H. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).

H. Chi, X. H. Zou, and J. P. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

H. Chi, X. H. Zou, and J. P. Yao, IEEE Photon. Technol. Lett. 20, 1249 (2008).
[CrossRef]

M. Attygalle and D. B. Hunter, IEEE Photon. Technol. Lett. 21, 206 (2009).
[CrossRef]

L. V. T. Nguyen, IEEE Photon. Technol. Lett. 21, 642 (2009).
[CrossRef]

S. L. Pan and J. P. Yao, IEEE Photon. Technol. Lett. 22, 1437 (2010).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, IEEE Photon. Technol. Lett. 18, 1188 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

X. H. Zou, H. Chi, and J. P. Yao, IEEE Trans. Microwave Theory Tech. 57, 505 (2009).

J. Lightwave Technol. (1)

Opt. Express (4)

Other (1)

J. B. Y. Tsui, Microwave Receivers with Electronic Warfare Applications (Wiley, New York, 1986), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the proposed photonic-assisted microwave measurement system. LD: laser diode; PC: polarization controller; MZM: Mach-Zehnder modulator; PMF: polarization-maintaining fiber; PBS: polarization beam splitter. PD: photodetector; LPF: low-pass filter.

Fig. 2.
Fig. 2.

Optical spectrum and waveform of the optical signal modulated by a 10 GHz pulsed microwave signal when the MZM is biased at the minimum transmission point.

Fig. 3.
Fig. 3.

(a) Transmission responses of the complementary filters; (b) the optical spectra of the filtered optical signal; (c) the waveforms of the signals after photodetection.

Fig. 4.
Fig. 4.

The estimated (a) frequency, (b) PA, (c) PW, and (d) TOA of the pulsed microwave signal versus the actual values based on the proposed method.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E(t)=P0exp(jωct)sin[β1R(t)cosωet],
E(t)β1P02R(t)exp(jωct)[exp(jωet)+exp(jωet)].
T±(ω)1±γcos(ωωcFSR),
I±=η±2β12R2(t)[1±γcos(ωeFSR)][1+cos2ωet],
ACF=II+=ηη+1γcos(ωeFSR)1+γcos(ωeFSR).
ωe=FSR·cos1(1γ1η+ηACF1+η+ηACF).
VeR(t)=2Vπ2I±π2η±[1±cos(ωeFSR)].

Metrics