Abstract

We report the first, to the best of our knowledge, experimental implementation of a spinning-disk configuration for high-speed compressive image acquisition. A single rotating mask (i.e., the spinning disk) with random binary patterns was utilized to spatially modulate a collimated terahertz (THz) or IR beam. After propagating through the sample, the THz or IR beam was measured using a single detector, and THz and IR images were subsequently reconstructed using compressive sensing. We demonstrate that a 32-by-32 pixel image could be obtained from 160 to 240 measurements in both the IR and THz ranges. This spinning-disk configuration allows the use of an electric motor to rotate the spinning disk, thus enabling the experiment to be performed automatically and continuously. This, together with its compact design and computational efficiency, makes it promising for real-time imaging applications.

© 2012 Optical Society of America

Full Article  |  PDF Article
Related Articles
Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging

Zhimin Xu and Edmund Y. Lam
J. Opt. Soc. Am. A 27(7) 1638-1646 (2010)

Photoacoustic imaging method based on arc-direction compressed sensing and multi-angle observation

Mingjian Sun, Naizhang Feng, Yi Shen, Xiangli Shen, Liyong Ma, Jiangang Li, and Zhenghua Wu
Opt. Express 19(16) 14801-14806 (2011)

Solving structure with sparse, randomly-oriented x-ray data

Hugh T. Philipp, Kartik Ayyer, Mark W. Tate, Veit Elser, and Sol M. Gruner
Opt. Express 20(12) 13129-13137 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Supplementary Material (1)

» Media 1: MOV (3984 KB)     

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription