Abstract

We propose an all-optical switching scheme based on Raman gain in a silicon nanowaveguide suitable for multichannel optical communication. Raman gain is used for amplification of a control pulse with a higher wavelength, which depletes the tuned channel signal. Separation between control and signal pulses should be equal to the Raman shift in silicon. By employing a 3mm channel nanowaveguide, we demonstrate a channel attenuation of about 12dB, while the suppression ratios for the first and second neighboring channels are about 1.6dB and 1dB, respectively. This scheme can be used as an all-optical switch in dense wavelength division multiplexing networks. Moreover, we demonstrate that the depleted channel can be retrieved by a control pulse with lower wavelength in which the pulse amplifies the channel in contrast to the prior situation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
    [CrossRef]
  2. C. A. Barrios, Electron. Lett. 40, 862 (2004).
  3. T. K. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. Tsang, Opt. Express 13, 7298 (2005).
    [CrossRef]
  4. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, Opt. Lett. 34, 476 (2009).
    [CrossRef]
  5. S. Abdollahi and M. K. Moravvej-Farshi, Opt. Lett. 35, 61 (2010).
    [CrossRef]
  6. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  7. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, J. Lightwave Technol. 26, 1423 (2008).
    [CrossRef]
  8. X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Quantum Electron. 42, 160 (2006).
    [CrossRef]
  9. Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
    [CrossRef]
  10. V. M. N. Passaro and F. de Leonardis, Opt. Quantum Electron. 38, 877 (2006).
    [CrossRef]
  11. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2003), Vol. 1, p. 134.
  12. R. Dekker, N. Usechak, M. Först, and A. Driessen, J. Phys. D 40, R249 (2007).
    [CrossRef]
  13. H. K. Tsang and Y. Liu, Semicond. Sci. Technol. 23, 064007 (2008).
    [CrossRef]
  14. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
    [CrossRef]
  15. B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
    [CrossRef]
  16. M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
    [CrossRef]

2010

2009

2008

2007

M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

R. Dekker, N. Usechak, M. Först, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
[CrossRef]

2006

X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Quantum Electron. 42, 160 (2006).
[CrossRef]

V. M. N. Passaro and F. de Leonardis, Opt. Quantum Electron. 38, 877 (2006).
[CrossRef]

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

2005

2004

Abdollahi, S.

Agrawal, G. P.

Baets, R.

Barrios, C. A.

C. A. Barrios, Electron. Lett. 40, 862 (2004).

Boyraz, Ö.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
[CrossRef]

Cannard, P.

M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Chen, X.

X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Quantum Electron. 42, 160 (2006).
[CrossRef]

Claps, R.

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2003), Vol. 1, p. 134.

de Leonardis, F.

V. M. N. Passaro and F. de Leonardis, Opt. Quantum Electron. 38, 877 (2006).
[CrossRef]

Dekker, R.

R. Dekker, N. Usechak, M. Först, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Dimitropoulos, D.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2003), Vol. 1, p. 134.

Driessen, A.

R. Dekker, N. Usechak, M. Först, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Dumon, P.

Fallahkhair, A. B.

Fauchet, P. M.

Först, M.

R. Dekker, N. Usechak, M. Först, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Gwilliam, R.

M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Jalali, B.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
[CrossRef]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2003), Vol. 1, p. 134.

Kawanishi, T.

Koonath, P.

Li, K. S.

Liang, T. K.

Lin, Q.

Liu, Y.

H. K. Tsang and Y. Liu, Semicond. Sci. Technol. 23, 064007 (2008).
[CrossRef]

Moravvej-Farshi, M. K.

Murphy, T. E.

Nunes, L.

Osgood, R. M.

X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Quantum Electron. 42, 160 (2006).
[CrossRef]

Painter, O. J.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Panoiu, N. C.

X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Quantum Electron. 42, 160 (2006).
[CrossRef]

Pantouvaki, M. M.

M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Passaro, V. M. N.

V. M. N. Passaro and F. de Leonardis, Opt. Quantum Electron. 38, 877 (2006).
[CrossRef]

Priem, G.

Raghunathan, V.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, Opt. Express 12, 2774 (2004).
[CrossRef]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
[CrossRef]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2003), Vol. 1, p. 134.

Renaud, C. C.

M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Robertson, M. J.

M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Sakamoto, T.

Sasagawa, K.

Seeds, A. J.

M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

Tsang, H.

Tsang, H. K.

H. K. Tsang and Y. Liu, Semicond. Sci. Technol. 23, 064007 (2008).
[CrossRef]

Tsuchiya, M.

Usechak, N.

R. Dekker, N. Usechak, M. Först, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Van Thourhout, D.

Yin, L.

Zhang, J.

Electron. Lett.

C. A. Barrios, Electron. Lett. 40, 862 (2004).

IEEE J. Quantum Electron.

X. Chen, N. C. Panoiu, and R. M. Osgood, IEEE J. Quantum Electron. 42, 160 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, IEEE J. Sel. Top. Quantum Electron. 12, 412 (2006).
[CrossRef]

M. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, IEEE J. Sel. Top. Quantum Electron. 13, 1112 (2007).
[CrossRef]

J. Lightwave Technol.

J. Phys. D

R. Dekker, N. Usechak, M. Först, and A. Driessen, J. Phys. D 40, R249 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

V. M. N. Passaro and F. de Leonardis, Opt. Quantum Electron. 38, 877 (2006).
[CrossRef]

Semicond. Sci. Technol.

H. K. Tsang and Y. Liu, Semicond. Sci. Technol. 23, 064007 (2008).
[CrossRef]

Other

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, in Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2003), Vol. 1, p. 134.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the SiNW all-optical switch configuration.

Fig. 2.
Fig. 2.

Wavelength dependence of effective mode index (neff) for TE (dashed curve), TM (circles) and β1 for TE (dashed curve), TM (circles). The cross section of the nanowaveguide is shown in the inset with W=350nm and h=400nm.

Fig. 3.
Fig. 3.

Maximum channel intensity for tuned channel (solid line), nearest neighbor channel (dashed line), and second neighbor channel (dotted line) versus position along z in the waveguide. In the inset, the neighbor channels in last 5nm of waveguide are shown.

Fig. 4.
Fig. 4.

Maximum channel intensity for tuned channel (solid line) and first (dashed line) and second (dotted line) neighbor channels versus different pump width. In the inset, neighbor channels are magnified.

Fig. 5.
Fig. 5.

Maximum channel intensity for (solid line), tuned channel (solid line), and first (dashed line) and second (dotted line) neighbor channels versus pump and signal delay time.

Fig. 6.
Fig. 6.

Spatiotemporal variation of (a) a 30ps control pulse, (b) the switched (depleted) channel, (c) the higher-frequency control pulse, and the (d) the retrieved channel, along the nanowaveguide.

Tables (1)

Tables Icon

Table 1. Parameter Values Used in the Simulations

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Apz+dpApt=iγTM(|Ap|2+(ρ3)i=14|ASi|2)AP12(αl+αFC)Ap+i(βpβav)+i=14RiAp,
ASjz+dSjASjt=iγTE((1+ρ2)|Ap|2+(ρ3)ij4|ASi|2)ASj12(αl+αFC)ASj+i(βSjβav)Ri*ASj,
Nct=βTPA2aeff2(|Ap|4ωp+i=14|ASi|4ωSi)NcτFC,
Ri=igR,sithR(tt)exp[iΩp,si(tt)]×ASi(z,t)Ap*(z,t)dt,
HR(Ω)=ΓRΩRΩR2Ω22iΓRΩ.
γm=2πn2λaeff,m+iβTPA2aeff,m,

Metrics