Abstract

We demonstrate a tunable fiber ring laser employing a two-dimensional dispersion arrangement filter, with the lasing determined by a liquid crystal on silicon (LCoS) spatial light modulator. Lasing wavelengths can be tuned discontinuously across the communication C-band at an addressable resolution of less than 200 MHz. We introduce full characterization of the laser output including phase and amplitude stability and short and long-term bandwidth measurements.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Paraschis, O. Gerstel, and R. Ramaswami, in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2004), Paper MF105.
  2. N. J. C. Libatique and R. K. Jain, IEEE Photon. Technol. Lett. 13, 1283 (2001).
    [CrossRef]
  3. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, 1995).
  4. H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, Opt. Commun. 275, 379 (2007).
    [CrossRef]
  5. N. Park, J. W. Dawson, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2369 (1991).
    [CrossRef]
  6. S. Yamashita and M. Nishihara, IEEE J. Sel. Top. Quantum Electron. 7, 41 (2001).
    [CrossRef]
  7. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
    [CrossRef]
  8. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, Opt. Express 17, 21773 (2009).
    [CrossRef]
  9. C. S. Kim, F. N. Farokhrooz, and J. U. Kang, Opt. Lett. 29, 1677 (2004).
    [CrossRef]
  10. A. P. Luo, Z. C. Luo, and W. C. Xu, Opt. Lett. 34, 2135 (2009).
    [CrossRef]
  11. D. A. Smith, M. W. Maeda, J. J. Johnson, J. S. Patel, M. A. Saifi, and A. Von Lehman, Opt. Lett. 16, 387 (1991).
    [CrossRef]
  12. F. Xiao, K. Alameh, and Y. T. Lee, Opt. Express 17, 23123 (2009).
    [CrossRef]
  13. F. Xiao, K. Alameh, and Y. T. Lee, IEEE Photon. Technol. Lett. 23, 182 (2011).
    [CrossRef]
  14. D. Sinefeld and D. M. Marom, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), Paper CTuI5.
  15. D. Sinefeld, C. R. Doerr, and D. M. Marom, Opt. Express 19, 14532 (2011).
    [CrossRef]

2011 (2)

F. Xiao, K. Alameh, and Y. T. Lee, IEEE Photon. Technol. Lett. 23, 182 (2011).
[CrossRef]

D. Sinefeld, C. R. Doerr, and D. M. Marom, Opt. Express 19, 14532 (2011).
[CrossRef]

2009 (3)

2007 (1)

H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, Opt. Commun. 275, 379 (2007).
[CrossRef]

2004 (1)

2001 (3)

N. J. C. Libatique and R. K. Jain, IEEE Photon. Technol. Lett. 13, 1283 (2001).
[CrossRef]

S. Yamashita and M. Nishihara, IEEE J. Sel. Top. Quantum Electron. 7, 41 (2001).
[CrossRef]

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
[CrossRef]

1991 (2)

Alameh, K.

F. Xiao, K. Alameh, and Y. T. Lee, IEEE Photon. Technol. Lett. 23, 182 (2011).
[CrossRef]

F. Xiao, K. Alameh, and Y. T. Lee, Opt. Express 17, 23123 (2009).
[CrossRef]

Dawson, J. W.

N. Park, J. W. Dawson, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2369 (1991).
[CrossRef]

Doerr, C. R.

Fang, X.

Farokhrooz, F. N.

Feinberg, J.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
[CrossRef]

Gerstel, O.

L. Paraschis, O. Gerstel, and R. Ramaswami, in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2004), Paper MF105.

Grattan, K. T. V.

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, 1995).

Havstad, S. A.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
[CrossRef]

He, X.

Jain, R. K.

N. J. C. Libatique and R. K. Jain, IEEE Photon. Technol. Lett. 13, 1283 (2001).
[CrossRef]

Johnson, J. J.

Kang, J. U.

Kim, C. S.

Lee, W. K.

H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, Opt. Commun. 275, 379 (2007).
[CrossRef]

Lee, Y. T.

F. Xiao, K. Alameh, and Y. T. Lee, IEEE Photon. Technol. Lett. 23, 182 (2011).
[CrossRef]

F. Xiao, K. Alameh, and Y. T. Lee, Opt. Express 17, 23123 (2009).
[CrossRef]

Liao, C.

Libatique, N. J. C.

N. J. C. Libatique and R. K. Jain, IEEE Photon. Technol. Lett. 13, 1283 (2001).
[CrossRef]

Luo, A. P.

Luo, Z. C.

Maeda, M. W.

Marom, D. M.

D. Sinefeld, C. R. Doerr, and D. M. Marom, Opt. Express 19, 14532 (2011).
[CrossRef]

D. Sinefeld and D. M. Marom, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), Paper CTuI5.

Meggitt, B. T.

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, 1995).

Miller, C.

N. Park, J. W. Dawson, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2369 (1991).
[CrossRef]

Moon, H. S.

H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, Opt. Commun. 275, 379 (2007).
[CrossRef]

Nishihara, M.

S. Yamashita and M. Nishihara, IEEE J. Sel. Top. Quantum Electron. 7, 41 (2001).
[CrossRef]

Paraschis, L.

L. Paraschis, O. Gerstel, and R. Ramaswami, in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2004), Paper MF105.

Park, N.

N. Park, J. W. Dawson, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2369 (1991).
[CrossRef]

Patel, J. S.

Ramaswami, R.

L. Paraschis, O. Gerstel, and R. Ramaswami, in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2004), Paper MF105.

Ryu, H. Y.

H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, Opt. Commun. 275, 379 (2007).
[CrossRef]

Saifi, M. A.

Sinefeld, D.

D. Sinefeld, C. R. Doerr, and D. M. Marom, Opt. Express 19, 14532 (2011).
[CrossRef]

D. Sinefeld and D. M. Marom, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), Paper CTuI5.

Smith, D. A.

Song, Y. W.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
[CrossRef]

Starodubov, D.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
[CrossRef]

Suh, H. S.

H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, Opt. Commun. 275, 379 (2007).
[CrossRef]

Sun, J.

Vahala, K. J.

N. Park, J. W. Dawson, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2369 (1991).
[CrossRef]

Von Lehman, A.

Wang, D. N.

Willner, A. E.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
[CrossRef]

Xiao, F.

F. Xiao, K. Alameh, and Y. T. Lee, IEEE Photon. Technol. Lett. 23, 182 (2011).
[CrossRef]

F. Xiao, K. Alameh, and Y. T. Lee, Opt. Express 17, 23123 (2009).
[CrossRef]

Xie, Y.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
[CrossRef]

Xu, W. C.

Yamashita, S.

S. Yamashita and M. Nishihara, IEEE J. Sel. Top. Quantum Electron. 7, 41 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

N. Park, J. W. Dawson, K. J. Vahala, and C. Miller, Appl. Phys. Lett. 59, 2369 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Yamashita and M. Nishihara, IEEE J. Sel. Top. Quantum Electron. 7, 41 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, IEEE Photon. Technol. Lett. 13, 1167 (2001).
[CrossRef]

F. Xiao, K. Alameh, and Y. T. Lee, IEEE Photon. Technol. Lett. 23, 182 (2011).
[CrossRef]

N. J. C. Libatique and R. K. Jain, IEEE Photon. Technol. Lett. 13, 1283 (2001).
[CrossRef]

Opt. Commun. (1)

H. Y. Ryu, W. K. Lee, H. S. Moon, and H. S. Suh, Opt. Commun. 275, 379 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (3)

L. Paraschis, O. Gerstel, and R. Ramaswami, in Proceedings of Optical Fiber Communication Conference (Optical Society of America, 2004), Paper MF105.

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology (Chapman & Hall, 1995).

D. Sinefeld and D. M. Marom, in Proceedings of the Conference on Lasers and Electro-Optics (Optical Society of America, 2011), Paper CTuI5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Layout of the ring laser: amplified light goes through crossed gratings (waveguide grating router (WGR) and bulk), which disperse the spectrum across the two-dimensional LCoS array, enabling high resolution access to the spectral components along the communication c-band. Inset: layout of a ring laser based on an adaptive filter and gain module inside the cavity.

Fig. 2.
Fig. 2.

(a) 2D spatial wavelength dispersion on the SLM. The WGR provides high resolution on the narrow FSR. The bulk grating separates the WGR diffraction orders. The black lines mark the borders of a specific WGR diffraction order, while the black ellipse denotes the spot size for a specific wavelength. (b) Exemplary applied LCoS phase, attenuating all spectral components except the lasing line, which appears as an open window. Scanning the lasing window along the white arrows selects the lasing frequency (horizontal translation selects WGR diffraction order; vertical translation selects along the fast axis or within the diffraction order).

Fig. 3.
Fig. 3.

Output of the fiber laser. (a) Laser lines from different diffraction orders of the WGR. (b) Laser lines from different locations of the same WGR diffraction order. Inset: linear fit of the center frequency verses mask opened window position, resulting in a slope of 182 MHz per SLM row. The slight deviation from linearity is caused by the uncertainty in the lasing line position within the 3 GHz spectral window.

Fig. 4.
Fig. 4.

Output power (blue line) and SMSR (green line) of the fiber laser versus output tap value, measured in various combinations: (a) EDFA before the coupler (results marked with black triangles); (b) EDFA after the coupler (results marked with red circles).

Fig. 5.
Fig. 5.

Measuring laser line width. (a) Setup for line width measurement using a high speed detector to measure the beating between a reference laser and the 2D laser, while a slow detector measures the direct output power of the 2D laser. (b) Registered powers of the beat frequency (blue) and the output power (green), with correlation between intensity spikes and mode hops. (c) Spectrogram of the interferometric measurement showing mode hops occurring every 1-3 ms. Frequency hop is approximately 8 MHz. Inset: cross section of the spectrogram showing instantaneous laser line width of 800 KHz. (d) Results of 10 000 measurements of laser relative lasing frequency taken along 8000 seconds. The central frequency changes are due to mode hoping and thermal drift. (e) Histogram of the above 10 000 measurements showing the long-term frequency excursion of the laser output.

Fig. 6.
Fig. 6.

Laser output power measurements: (a) Intensity measurement versus time taken over 800 seconds sampled at 10 KHz. (b) RIN measurement results.

Metrics