Abstract

Through extensive laboratory experimentation we demonstrate that the temporal frequency content of turbulence-induced scintillation strongly depends on the temperature gradient exerted at the propagation path of a collimated laser beam. We find a power law relating the turbulence strength induced by convection with the vertical temperature gradient and we show that the cutoff frequency of scintillation shows an approximately linear growth with turbulence strength, measured by angle-of-arrival fluctuations. The impact of these findings are discussed in the context of free-space optical communications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu and J. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
    [CrossRef]
  2. L. Andrews and R. Phillips, Laser Beam Propagation in Random Media (SPIE, 2005).
    [CrossRef]
  3. R. Mahon, C. I. Moore, H. R. Burris, W. S. Rabinovich, M. Stell, M. R. Suite, and L. M. Thomas, Appl. Opt. 48, 2388 (2009).
    [CrossRef] [PubMed]
  4. J. Anguita, M. Neifeld, B. Hildner, and B. Vasic, J. Lightwave Technol. 28, 990 (2010).
    [CrossRef]
  5. F. Roddier, J. M. Gilli, and G. Lund, J. Opt. 13, 263 (1982).
    [CrossRef]
  6. C. Aime, J. Borgnino, F. Martin, R. Petrov, G. Ricort, and S. Kadiri, J. Opt. Soc. Am. A 3, 1001 (1986).
    [CrossRef]
  7. J. H. Churnside and R. J. Lataitis, J. Opt. Soc. Am. A 4, 1264 (1987).
    [CrossRef]

2010 (1)

2009 (1)

2002 (1)

X. Zhu and J. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

1987 (1)

1986 (1)

1982 (1)

F. Roddier, J. M. Gilli, and G. Lund, J. Opt. 13, 263 (1982).
[CrossRef]

Aime, C.

Andrews, L.

L. Andrews and R. Phillips, Laser Beam Propagation in Random Media (SPIE, 2005).
[CrossRef]

Anguita, J.

Borgnino, J.

Burris, H. R.

Churnside, J. H.

Gilli, J. M.

F. Roddier, J. M. Gilli, and G. Lund, J. Opt. 13, 263 (1982).
[CrossRef]

Hildner, B.

Kadiri, S.

Kahn, J.

X. Zhu and J. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

Lataitis, R. J.

Lund, G.

F. Roddier, J. M. Gilli, and G. Lund, J. Opt. 13, 263 (1982).
[CrossRef]

Mahon, R.

Martin, F.

Moore, C. I.

Neifeld, M.

Petrov, R.

Phillips, R.

L. Andrews and R. Phillips, Laser Beam Propagation in Random Media (SPIE, 2005).
[CrossRef]

Rabinovich, W. S.

Ricort, G.

Roddier, F.

F. Roddier, J. M. Gilli, and G. Lund, J. Opt. 13, 263 (1982).
[CrossRef]

Stell, M.

Suite, M. R.

Thomas, L. M.

Vasic, B.

Zhu, X.

X. Zhu and J. Kahn, IEEE Trans. Commun. 50, 1293 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of the laboratory experimental setup.

Fig. 2
Fig. 2

Power spectra of time functions with Δ T = 55 ° C , Δ T = 25 ° C , and Δ T = 5 ° C . An exponential curve is fitted to each spectrum in the range within which the response is decaying.

Fig. 3
Fig. 3

Cutoff frequency of scintillation as a function of Δ T in degrees Celsius.

Fig. 4
Fig. 4

Experimentally estimated C n 2 as a function of Δ T (in degrees Celsius) using angle-of-arrival fluctuations, for two independent datasets.

Fig. 5
Fig. 5

Cutoff frequency of scintillation (in hertz) as a function of σ R (bottom abscissa) and D / r 0 (top abscissa).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S = 10 ( a + b f )
f 0 = 2 / | b | .
τ 0 = | b | / 2 .
C n 2 = 0.913 σ β 2 D 1 / 3 / z ,
C n 2 = 3.3 × 10 14 ( Δ T ) 1.82 ,

Metrics