Abstract

We present an approach to laser scanning endomicroscopy that requires no moving parts and can be implemented with no distal scanners or optics, permitting extremely compact endoscopic probes to be developed. Our approach utilizes a spatial light modulator to correct for phase variations across a fiber imaging bundle and to encode for arbitrary wavefronts at the distal end of the fiber bundle. Thus, it is possible to realize both focusing and beam scanning at the output of the fiber bundle with no distal components. We present proof of principle results to illustrate three-dimensional scanning of the focal spot and exemplar images of a United States Air Force resolution test chart.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection

Sean C. Warren, Youngchan Kim, James M. Stone, Claire Mitchell, Jonathan C. Knight, Mark A. A. Neil, Carl Paterson, Paul M. W. French, and Chris Dunsby
Opt. Express 24(19) 21474-21484 (2016)

Widefield lensless imaging through a fiber bundle via speckle correlations

Amir Porat, Esben Ravn Andresen, Hervé Rigneault, Dan Oron, Sylvain Gigan, and Ori Katz
Opt. Express 24(15) 16835-16855 (2016)

Adaptive aberration correction of GRIN lenses for confocal endomicroscopy

W. M. Lee and S. H. Yun
Opt. Lett. 36(23) 4608-4610 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription