Abstract

The guided-mode resonance phenomenon in curved grating structures was studied. By using finite-difference time-domain simulation in the cylindrical coordinate system, we investigated the dependence of the peak reflectivity and bandwidth of the resonance upon the curvature radius. We clarified that the reflectivity and bandwidth were similar to those of flat grating structures for a finite range of curvature. We also discussed the key factor that determines the performance of reflection.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [CrossRef] [PubMed]
  2. Y. Ding and R. Magnusson, Opt. Express 12, 5661 (2004).
    [CrossRef] [PubMed]
  3. S. S. Wang and R. Magnusson, Opt. Lett. 19, 919 (1994).
    [CrossRef] [PubMed]
  4. R. Magnusson and S. S. Wang, Appl. Opt. 34, 8106(1995).
    [CrossRef] [PubMed]
  5. A. Lehmuskero, I. Vartiainen, T. Saastamoinen, T. Alasaarela, and M. Kuittinen, Opt. Express 18, 27270 (2010).
    [CrossRef]
  6. K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, Appl. Phys. Lett. 88, 141109 (2006).
    [CrossRef]
  7. D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, Opt. Lett. 35, 3201 (2010).
    [CrossRef] [PubMed]
  8. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
    [CrossRef]
  9. S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  10. D. W. Peters, S. A. Kemme, and G. R. Hadley, J. Opt. Soc. Am. A 21, 981 (2004).
    [CrossRef]
  11. A. Taflove, Computational Electrodynamics: The Finite–Difference Time–Domain Method (Artech, 1995).

2010 (2)

2006 (1)

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

2004 (2)

2002 (1)

S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

1997 (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

Alasaarela, T.

Boye, R. R.

Carter, T. R.

Ding, Y.

Fan, S.

S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Hadley, G. R.

Hane, K.

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

Hu, F.-R.

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Kanamori, Y.

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

Kellogg, R. A.

Kemme, S. A.

Kobayashi, T.

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

Kuittinen, M.

Lehmuskero, A.

Magnusson, R.

Peters, D. W.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Saastamoinen, T.

Samora, S.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite–Difference Time–Domain Method (Artech, 1995).

Vartiainen, I.

Wang, S. S.

Wendt, J. R.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. Hane, T. Kobayashi, F.-R. Hu, and Y. Kanamori, Appl. Phys. Lett. 88, 141109 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Other (1)

A. Taflove, Computational Electrodynamics: The Finite–Difference Time–Domain Method (Artech, 1995).

Supplementary Material (3)

» Media 1: AVI (499 KB)     
» Media 2: AVI (420 KB)     
» Media 3: AVI (462 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the sample resonant gratings. (a) Flat structure, (b) Curved structure. Dotted lines indicate wavefronts.

Fig. 2
Fig. 2

Schematic of the analytical space for the cylindrical FDTD calculation.

Fig. 3
Fig. 3

Reflection spectra of TE modes ( E z , H θ , and H r ) for various curvatures.

Fig. 4
Fig. 4

Dependence of reflection characteristics on the curvature. Solid lines are peak reflectivity and bandwidth (FWHM). Dotted line denotes the propagation distance of the leaky mode.

Fig. 5
Fig. 5

Instantaneous field pattern of the gratings at the resonance wavelength. (a) Amplitude of E z (Media 1), (b)  H r · W 0 where W 0 = μ 0 ε 0 is the impedance in vacuum (Media 2). (c)  E z (Media 3). (a) and (b) are for ρ = 8 Λ 0 , and (c) is for ρ = 2.9 Λ 0 .

Metrics