Abstract

A pilot-based nonlinearity compensator (PB-NLC) is shown in this Letter to be an effective method for compensating cross-phase modulation (XPM) in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. An unmodulated pilot tone is transmitted at the center of each OFDM channel to detect phase errors caused by the Kerr effect, which converts intensity fluctuations from all channels to phase errors. The pilots are then used to cancel the XPM phase errors for each OFDM channel at the receiver after each channel’s self-phase modulation (SPM) has been compensated, using its intensity waveform to determine its SPM. Numerical simulations of a 58Gb/s single polarization 2375km system with inline dispersion compensation show that the signal quality, Q, at the optimal launch power is increased by 2.4dB if SPM compensation is used before the PB-NLC. This contrasts with only a 0.9dB improvement if the PB-NLC is used without an SPM compensator for the same link. This shows the PB-NLC can effectively mitigate XPM but not SPM.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription