Abstract

We report on the generation and rapid characterization of structured beams of arbitrary spatial coherence. An experimental setup is introduced capable of generating partially coherent fields by incoherently superposing fully coherent fields. The characterization is performed using the spectral information in the interferogram produced when using a two-dimensional nonredundant array of pinholes. An example of a partially coherent “doughnut” beam is given and proved to be partially coherent.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Zare, Science 279, 1875 (1998).
    [CrossRef] [PubMed]
  2. M. Shapiro and P. Brumer, Phys. Rev. Lett. 77, 2574 (1996).
    [CrossRef] [PubMed]
  3. V. V. Dantus and M. Lozovoy, Chem. Rev. 104, 1813 (2004).
    [CrossRef] [PubMed]
  4. M. S. Zubairy and J. K. McIver, Phys. Rev. A 36, 202 (1987).
    [CrossRef] [PubMed]
  5. J. H. Churnsidea, Opt. Commun. 51, 207 (1984).
    [CrossRef]
  6. Y. Cai and U. Peschel, Opt. Express 15, 15480 (2007).
    [CrossRef] [PubMed]
  7. M. J. Pu and T. Wang, Appl. Opt. 45, 7553 (2006).
    [CrossRef] [PubMed]
  8. W. N. Partlo and W. G. Oldham, J. Vac. Sci. Technol. B 9, 3126 (1991).
    [CrossRef]
  9. H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
    [CrossRef]
  10. P. D. Santis, F. Gori, G. Guattari, and C. Palma, J. Opt. Soc. Am. A 3, 1258 (1986).
    [CrossRef]
  11. A. I. González and Y. Mejía, AIP Conf. Proc. 992, 478 (2008).
    [CrossRef]
  12. J. W. Goodman, Statistical Optics (Wiley, 2004).
  13. E. Wolf, Opt. Commun. 38, 3 (1981).
    [CrossRef]
  14. W. Neil and Juškaitis, J. Microsc. 197, 219 (2000).
    [CrossRef] [PubMed]
  15. M. R. Foreman and P. Török, J. Opt. Soc. Am. A 26, 2470 (2009).
    [CrossRef]

2009 (1)

2008 (1)

A. I. González and Y. Mejía, AIP Conf. Proc. 992, 478 (2008).
[CrossRef]

2007 (1)

2006 (1)

2004 (1)

V. V. Dantus and M. Lozovoy, Chem. Rev. 104, 1813 (2004).
[CrossRef] [PubMed]

2000 (1)

W. Neil and Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef] [PubMed]

1998 (1)

R. N. Zare, Science 279, 1875 (1998).
[CrossRef] [PubMed]

1996 (1)

M. Shapiro and P. Brumer, Phys. Rev. Lett. 77, 2574 (1996).
[CrossRef] [PubMed]

1993 (1)

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
[CrossRef]

1991 (1)

W. N. Partlo and W. G. Oldham, J. Vac. Sci. Technol. B 9, 3126 (1991).
[CrossRef]

1987 (1)

M. S. Zubairy and J. K. McIver, Phys. Rev. A 36, 202 (1987).
[CrossRef] [PubMed]

1986 (1)

1984 (1)

J. H. Churnsidea, Opt. Commun. 51, 207 (1984).
[CrossRef]

1981 (1)

E. Wolf, Opt. Commun. 38, 3 (1981).
[CrossRef]

Brumer, P.

M. Shapiro and P. Brumer, Phys. Rev. Lett. 77, 2574 (1996).
[CrossRef] [PubMed]

Cai, Y.

Churnsidea, J. H.

J. H. Churnsidea, Opt. Commun. 51, 207 (1984).
[CrossRef]

Dantus, V. V.

V. V. Dantus and M. Lozovoy, Chem. Rev. 104, 1813 (2004).
[CrossRef] [PubMed]

Foreman, M. R.

González, A. I.

A. I. González and Y. Mejía, AIP Conf. Proc. 992, 478 (2008).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 2004).

Gori, F.

Guattari, G.

Juškaitis,

W. Neil and Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef] [PubMed]

Kanabe, T.

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
[CrossRef]

Lozovoy, M.

V. V. Dantus and M. Lozovoy, Chem. Rev. 104, 1813 (2004).
[CrossRef] [PubMed]

McIver, J. K.

M. S. Zubairy and J. K. McIver, Phys. Rev. A 36, 202 (1987).
[CrossRef] [PubMed]

Mejía, Y.

A. I. González and Y. Mejía, AIP Conf. Proc. 992, 478 (2008).
[CrossRef]

Miyanaga, N.

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
[CrossRef]

Nakano, H.

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
[CrossRef]

Nakatsuka, M.

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
[CrossRef]

Neil, W.

W. Neil and Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef] [PubMed]

Oldham, W. G.

W. N. Partlo and W. G. Oldham, J. Vac. Sci. Technol. B 9, 3126 (1991).
[CrossRef]

Palma, C.

Partlo, W. N.

W. N. Partlo and W. G. Oldham, J. Vac. Sci. Technol. B 9, 3126 (1991).
[CrossRef]

Peschel, U.

Pu, M. J.

Santis, P. D.

Shapiro, M.

M. Shapiro and P. Brumer, Phys. Rev. Lett. 77, 2574 (1996).
[CrossRef] [PubMed]

Török, P.

Tsubakimoto, K.

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
[CrossRef]

Wang, T.

Wolf, E.

E. Wolf, Opt. Commun. 38, 3 (1981).
[CrossRef]

Yagi, K.

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
[CrossRef]

Zare, R. N.

R. N. Zare, Science 279, 1875 (1998).
[CrossRef] [PubMed]

Zubairy, M. S.

M. S. Zubairy and J. K. McIver, Phys. Rev. A 36, 202 (1987).
[CrossRef] [PubMed]

AIP Conf. Proc. (1)

A. I. González and Y. Mejía, AIP Conf. Proc. 992, 478 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Nakano, N. Miyanaga, K. Yagi, K. Tsubakimoto, T. Kanabe, and M. Nakatsuka, Appl. Phys. Lett. 63, 580 (1993).
[CrossRef]

Chem. Rev. (1)

V. V. Dantus and M. Lozovoy, Chem. Rev. 104, 1813 (2004).
[CrossRef] [PubMed]

J. Microsc. (1)

W. Neil and Juškaitis, J. Microsc. 197, 219 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. B (1)

W. N. Partlo and W. G. Oldham, J. Vac. Sci. Technol. B 9, 3126 (1991).
[CrossRef]

Opt. Commun. (2)

J. H. Churnsidea, Opt. Commun. 51, 207 (1984).
[CrossRef]

E. Wolf, Opt. Commun. 38, 3 (1981).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

M. S. Zubairy and J. K. McIver, Phys. Rev. A 36, 202 (1987).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

M. Shapiro and P. Brumer, Phys. Rev. Lett. 77, 2574 (1996).
[CrossRef] [PubMed]

Science (1)

R. N. Zare, Science 279, 1875 (1998).
[CrossRef] [PubMed]

Other (1)

J. W. Goodman, Statistical Optics (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup proposed for the generation and characterization of structured partially coherent beams. NPBS, nonpolarizing beam splitter.

Fig. 2
Fig. 2

(a) Curved path described by the fiber bundle at the exit side. The white box is a magnified image of the overlapped orders when creating a partially coherent doughnut beam. The partially coherent doughnut beam is produced by incoherently superposing HG mode ( 1 , 0 ) , mode ( 0 , 1 ) , and mode ( 1 , 1 ) . (b) Irradiance distribution of the partially coherent doughnut beam at the back focal plane of the collimator lens.

Fig. 3
Fig. 3

(a) Fourier spectrum obtained experimentally when illuminating the pinhole array with the generated partially coherent doughnut beam. (b) Theoretical Fourier spectrum expected when illuminating the array with the generated doughnut beam. (c) Experimental Fourier spectrum obtained when illuminating with a fully coherent doughnut beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W ( r 1 , r 2 , ω ) = n = 0 λ n ϕ n * ( r 1 ) ϕ n ( r 2 ) ,
D W ( r 1 , r 2 ) ϕ n ( r 1 ) d r 1 = λ n ϕ n ( r 2 ) .

Metrics