Abstract

A photonic quantization approach to implementing analog-to-digital conversion (ADC) in the optical domain with differential encoding employing a phase modulator and delay-line interferometers (DLIs) is proposed and demonstrated. In the proposed ADC system, the phase-modulated signal is sent to an array of DLIs that have identical time delay difference, but different phase shifts, which are employed to achieve quantization with differential encoding. A proof-of-concept experiment is performed. The quantization of a 10GHz sinusoidal signal with a bit length of 4 is experimentally demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, Opt. Express 15, 1955 (2007).
    [CrossRef] [PubMed]
  2. H. F. Taylor, Proc. IEEE 63, 1524 (1975).
    [CrossRef]
  3. B. Jalali and Y. M. Xie, Opt. Lett. 20, 1901 (1995).
    [CrossRef] [PubMed]
  4. M. Currie, J. Lightwave Technol. 23, 827 (2005).
    [CrossRef]
  5. J. Stigwall and S. Galt, IEEE Photon. Technol. Lett. 17, 468 (2005).
    [CrossRef]
  6. J. Stigwall and S. Galt, J. Lightwave Technol. 24, 1247 (2006).
    [CrossRef]
  7. W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, IEEE Photon. Technol. Lett. 19, 625 (2007).
    [CrossRef]
  8. H. Chi and J. P. Yao, Opt. Express 16, 567 (2008).
    [CrossRef] [PubMed]
  9. X. Fang and R. O. Claus, Opt. Lett. 20, 2146 (1995).
    [CrossRef] [PubMed]
  10. Y. Peng, H. Zhang, Q. Wu, X. Fu, and M. Yao, Opt. Lett. 34, 2201 (2009).
    [CrossRef] [PubMed]
  11. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, and D. Hodge, Opt. Express 13, 3129 (2005).
    [CrossRef] [PubMed]
  12. V. M. N. Passaro and F. Dell’Olio, IEEE Trans. Nanotechnol. 7, 401 (2008).
    [CrossRef]
  13. Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.
  14. Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
    [CrossRef]

2011

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

2009

2008

V. M. N. Passaro and F. Dell’Olio, IEEE Trans. Nanotechnol. 7, 401 (2008).
[CrossRef]

H. Chi and J. P. Yao, Opt. Express 16, 567 (2008).
[CrossRef] [PubMed]

2007

G. C. Valley, Opt. Express 15, 1955 (2007).
[CrossRef] [PubMed]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

2006

2005

1995

1975

H. F. Taylor, Proc. IEEE 63, 1524 (1975).
[CrossRef]

Aguirre, J.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Barrios, P. J.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Ben-Hamida, N.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Besson, M.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Caballero, J.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Chi, H.

Claus, R. O.

Currie, M.

Dell’Olio, F.

V. M. N. Passaro and F. Dell’Olio, IEEE Trans. Nanotechnol. 7, 401 (2008).
[CrossRef]

Falt, C.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Fang, X.

Flemke, P.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Fu, X.

Galt, S.

J. Stigwall and S. Galt, J. Lightwave Technol. 24, 1247 (2006).
[CrossRef]

J. Stigwall and S. Galt, IEEE Photon. Technol. Lett. 17, 468 (2005).
[CrossRef]

Gibbins, R.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Greshishchev, Y. M.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Hodge, D.

Jalali, B.

Jiao, Z. J.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Li, W.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Liao, L.

Liu, A.

Liu, J. R.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Lu, Z. G.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Morse, M.

Passaro, V. M. N.

V. M. N. Passaro and F. Dell’Olio, IEEE Trans. Nanotechnol. 7, 401 (2008).
[CrossRef]

Peng, Y.

Poitras, D.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Pollex, D.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Poole, P. J.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Schvan, P.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Stigwall, J.

J. Stigwall and S. Galt, J. Lightwave Technol. 24, 1247 (2006).
[CrossRef]

J. Stigwall and S. Galt, IEEE Photon. Technol. Lett. 17, 468 (2005).
[CrossRef]

Taylor, H. F.

H. F. Taylor, Proc. IEEE 63, 1524 (1975).
[CrossRef]

Valley, G. C.

Wang, S.-C.

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Wu, Q.

Y. Peng, H. Zhang, Q. Wu, X. Fu, and M. Yao, Opt. Lett. 34, 2201 (2009).
[CrossRef] [PubMed]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Xie, Y. M.

Yao, J. P.

Yao, M.

Y. Peng, H. Zhang, Q. Wu, X. Fu, and M. Yao, Opt. Lett. 34, 2201 (2009).
[CrossRef] [PubMed]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Zhang, H.

Y. Peng, H. Zhang, Q. Wu, X. Fu, and M. Yao, Opt. Lett. 34, 2201 (2009).
[CrossRef] [PubMed]

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

Zhang, X. P.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Zhang, Z.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

W. Li, H. Zhang, Q. Wu, Z. Zhang, and M. Yao, IEEE Photon. Technol. Lett. 19, 625 (2007).
[CrossRef]

J. Stigwall and S. Galt, IEEE Photon. Technol. Lett. 17, 468 (2005).
[CrossRef]

IEEE Trans. Nanotechnol.

V. M. N. Passaro and F. Dell’Olio, IEEE Trans. Nanotechnol. 7, 401 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, Opt. Commun. 284, 2323 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

H. F. Taylor, Proc. IEEE 63, 1524 (1975).
[CrossRef]

Other

Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida, D. Pollex, P. Schvan, and S.-C. Wang, in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 2010), pp. 390–391.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the proposed scheme for photonic quantization. PM, phase modulator; DLIs, delay-line interferometers; PD, photodetector; COMP, comparator.

Fig. 2
Fig. 2

Quantization principle of the proposed approach. (a) Photocurrent at a function of the differential phase for the four channels; (b) quantized signals at the outputs of the four comparators.

Fig. 3
Fig. 3

Experimental setup. TLS, tunable laser source; PC, polarization controller; PM, phase modulator; SLF, Sagnac-loop filter; PD, photodetector; OSC, oscilloscope.

Fig. 4
Fig. 4

Detected temporal waveforms at the output of the PDs for the SLF with a phase shift at π / 16 (solid curve) and 13 π / 16 (dotted curve).

Fig. 5
Fig. 5

Quantized signal (solid curve) and fitted sinusoidal signal (dashed curve).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E D ( t ) = ( 1 / 2 ) [ E m ( t ) + E m ( t τ ) ] = ( 1 / 2 ) exp ( j ω 0 t ) × { g ( t ) exp [ j φ s ( t ) ] + g ( t τ ) exp [ j φ s ( t τ ) j φ b ] } .
E D ( t ) = ( 1 / 2 ) g ( t ) exp ( j ω 0 t ) { exp [ j φ s ( t ) ] + exp [ j φ s ( t τ ) j φ b ] } .
i ( t ) | E D ( t ) | 2 = ( 1 / 2 ) | g ( t ) | 2 { 1 + cos [ φ s ( t ) φ s ( t τ ) + φ b ] } = ( 1 / 2 ) | g ( t ) | 2 { 1 + cos [ φ d ( t ) + φ b ] } ,

Metrics