Abstract

By stacking alternatively rotated gallium phosphide (GaP) plates, the maximum photon conversion efficiency of 40% for the terahertz (THz) generation based on difference-frequency generation has been achieved. The corresponding peak power generated inside the four GaP plates approaches 4kW. As the number of plates is increased from four to five, the THz output power is significantly decreased, due to back parametric conversion.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
    [CrossRef]
  2. L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
    [CrossRef]
  3. D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
    [CrossRef]
  4. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
    [CrossRef]
  5. F. Blanchard, L. Razzari, H.-C. Bandulet, G. Sharma, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, H. F. Tiedje, H. K. Haugen, and F. A. Hegmann, Opt. Express 15, 13212(2007).
    [CrossRef] [PubMed]
  6. H. Sun, Y. J. Ding, and I. B. Zotova, IEEE Sens. J. 10, 621 (2010).
    [CrossRef]
  7. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
    [CrossRef]
  8. W. Shi and Y. J. Ding, Int. J. High Speed Electron. Syst. 16, 589 (2006).
    [CrossRef]
  9. Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 96, 031101 (2010).
    [CrossRef]
  10. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, Opt. Lett. 35, 1698 (2010).
    [CrossRef] [PubMed]
  11. X. Mu, H. Meissner, and H.-C. Lee, Opt. Lett. 35, 387 (2010).
    [CrossRef] [PubMed]
  12. A. Yariv, in Quantum Electronics (Wiley, 1989), pp. 399–425.

2011 (1)

S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
[CrossRef]

2010 (4)

H. Sun, Y. J. Ding, and I. B. Zotova, IEEE Sens. J. 10, 621 (2010).
[CrossRef]

Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 96, 031101 (2010).
[CrossRef]

X. Mu, H. Meissner, and H.-C. Lee, Opt. Lett. 35, 387 (2010).
[CrossRef] [PubMed]

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, Opt. Lett. 35, 1698 (2010).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

W. Shi and Y. J. Ding, Int. J. High Speed Electron. Syst. 16, 589 (2006).
[CrossRef]

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

1992 (1)

L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
[CrossRef]

1984 (2)

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[CrossRef]

Auston, D. H.

L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
[CrossRef]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Bandulet, H.-C.

Blanchard, F.

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[CrossRef]

Ding, Y. J.

H. Sun, Y. J. Ding, and I. B. Zotova, IEEE Sens. J. 10, 621 (2010).
[CrossRef]

Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 96, 031101 (2010).
[CrossRef]

W. Shi and Y. J. Ding, Int. J. High Speed Electron. Syst. 16, 589 (2006).
[CrossRef]

Haugen, H. K.

Hegmann, F. A.

Ito, H.

Jiang, Y.

Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 96, 031101 (2010).
[CrossRef]

Kawase, K.

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

Kieffer, J.-C.

Kleinman, D. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[CrossRef]

Kumar, S.

S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
[CrossRef]

Lee, H.-C.

Meissner, H.

Minamide, H.

Morandotti, R.

Mu, X.

Notake, T.

Ohno, S.

Ozaki, T.

Razzari, L.

Reid, M.

Sato, M.

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

Sharma, G.

Shi, W.

W. Shi and Y. J. Ding, Int. J. High Speed Electron. Syst. 16, 589 (2006).
[CrossRef]

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

Sun, H.

H. Sun, Y. J. Ding, and I. B. Zotova, IEEE Sens. J. 10, 621 (2010).
[CrossRef]

Tang, M.

Taniuchi, T.

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

Tiedje, H. F.

Valdmanis, J. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[CrossRef]

Wang, Y.

Xu, L.

L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
[CrossRef]

Yariv, A.

A. Yariv, in Quantum Electronics (Wiley, 1989), pp. 399–425.

Zhang, X.-C.

L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
[CrossRef]

Zotova, I. B.

H. Sun, Y. J. Ding, and I. B. Zotova, IEEE Sens. J. 10, 621 (2010).
[CrossRef]

Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 96, 031101 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

L. Xu, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. 61, 1784 (1992).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).
[CrossRef]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, Appl. Phys. Lett. 68, 2483 (1996).
[CrossRef]

Y. Jiang, Y. J. Ding, and I. B. Zotova, Appl. Phys. Lett. 96, 031101 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Kumar, IEEE J. Sel. Top. Quantum Electron. 17, 38 (2011).
[CrossRef]

IEEE Sens. J. (1)

H. Sun, Y. J. Ding, and I. B. Zotova, IEEE Sens. J. 10, 621 (2010).
[CrossRef]

Int. J. High Speed Electron. Syst. (1)

W. Shi and Y. J. Ding, Int. J. High Speed Electron. Syst. 16, 589 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).
[CrossRef]

Other (1)

A. Yariv, in Quantum Electronics (Wiley, 1989), pp. 399–425.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectrum of THz output power generated by four reversed GaP plates, covering a range of 78 300 μm .

Fig. 2
Fig. 2

Spectrum of THz output power generated by aligned four GaP plates, covering a tuning range of 135 500 μm .

Fig. 3
Fig. 3

Conversion efficiency for THz generation versus input power at 1.074 μm for four reversed GaP plates (red dots) and 1.069 μm for four aligned GaP plates (blue circles). Blue dashed curve (bottom) represents linear fit, whereas the red curve (top) is fitted using Eq. (1).

Fig. 4
Fig. 4

Highest THz output power generated by reversed GaP plates versus the number of plates. Blue curve represents nonlinear least squares fit to data points using Eq. (1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η p = η max sin 2 [ ( π / 2 ) P ave / P opt ] ,
P opt = c ε 0 n 1 n 2 n T λ 1 λ T a 2 τ 2 R 16 d eff 2 L 2 T 2 ,

Metrics