Abstract

In this Letter, we propose and experimentally demonstrate the generation of second-order full Poincaré beams and its applications in two-dimensional flattop beam shaping with spatially variant polarization under low NA focusing condition. High-quality flattop profiles with steep edge roll-off can be obtained with this technique. The experiment results also demonstrate that flattop profile can be maintained for different input beam sizes by conveniently rotating a half-wave plate.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
    [CrossRef]
  2. L. A. Romero and F. M. Dickey, J. Opt. Soc. Am. A 13, 751(1996).
    [CrossRef]
  3. C.-Y. Han, Y. Ishii, and K. Murata, Appl. Opt. 22, 3644(1983).
    [CrossRef] [PubMed]
  4. X. Tan, B. Y. Gu, G. Z. Yang, and B. Z. Dong, Appl. Opt. 34, 1314 (1995).
    [CrossRef] [PubMed]
  5. Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002).
    [PubMed]
  6. B. Hao and J. R. Leger, Opt. Express 15, 3550 (2007).
    [CrossRef] [PubMed]
  7. B. Hao and J. Leger, Appl. Opt. 46, 8211 (2007).
    [CrossRef] [PubMed]
  8. A. M. Beckley, T. G. Brown, and M. A. Alonso, Opt. Express 18, 10777 (2010).
    [CrossRef] [PubMed]
  9. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  10. J. Dai and Q. Zhan, Proc. SPIE 7062, 70620D (2008).
    [CrossRef]
  11. A. K. Spilman and T. G. Brown, Appl. Opt. 46, 61 (2007).
    [CrossRef]

2010

2009

2008

J. Dai and Q. Zhan, Proc. SPIE 7062, 70620D (2008).
[CrossRef]

2007

2002

1996

1995

1983

Alonso, M. A.

Beckley, A. M.

Brown, T. G.

Dai, J.

J. Dai and Q. Zhan, Proc. SPIE 7062, 70620D (2008).
[CrossRef]

Dickey, F. M.

L. A. Romero and F. M. Dickey, J. Opt. Soc. Am. A 13, 751(1996).
[CrossRef]

F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
[CrossRef]

Dong, B. Z.

Gu, B. Y.

Han, C.-Y.

Hao, B.

Holswade, S. C.

F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
[CrossRef]

Ishii, Y.

Leger, J.

Leger, J. R.

Murata, K.

Romero, L. A.

Spilman, A. K.

Tan, X.

Yang, G. Z.

Zhan, Q.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Intensity and polarization map of a second-order FP beam.

Fig. 2
Fig. 2

(a) Theoretical calculation and (b) experimental result of a flattop profile produced by superimposing a fundamental Gaussian beam and a second-order FP beam.

Fig. 3
Fig. 3

Experimental setup for generating a flattop profile by superimposing a fundamental Gaussian beam and a second-order FP beam. Laser, linearly polarized He–Ne laser; pinhole, adjust the input beam size; LP, linear polarizer; HW, half-wave plate; BS, beam splitter; SLM, liquid crystal spatial light modulator (Boulder Nonlinear System P512-632); CCD, Spiricon camera. (Inset) Topological charge of a + 2 phase pattern with the lens phase pattern superimposed displayed on the SLM.

Fig. 4
Fig. 4

Flattop profile of three different input beam diameters: (a)  4.5 mm ( β = 4.099 ), (b)  5 mm ( β = 4.71 ), and (c)  6 mm ( β = 5.227 ).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

LG 00 ( r , z ) = A 0 w 0 w ( z ) exp ( j ( k z φ ( z ) ) r 2 ( 1 w ( z ) 2 + j k 2 R ( z ) ) ) ,
LG 02 ( r , z ) = 2 A 0 r 2 w ( z ) 2 w 0 w ( z ) exp ( j ( k z 3 φ ( z ) ) r 2 ( 1 w ( z ) 2 + j k 2 R ( z ) ) j 2 ϕ ) ,
E FP ( r , z ) = cos γ LG 00 x ^ + sin γ LG 02 y ^ = ( x ^ + 2 tan γ r 2 w ( z ) 2 exp j ( 2 φ ( z ) 2 ϕ ) y ^ ) · cos γ A 0 w 0 w ( z ) exp ( j ( k z φ ( z ) ) r 2 ( 1 w ( z ) 2 + j k 2 R ( z ) ) ) .
E FP ( r , z ) = C ( 1 2 tan γ r 2 w ( z ) 2 exp j ( 2 φ ( z ) 2 ϕ ) y ^ ) .
ρ 0 = 2 tan γ r 2 w ( z ) 2 ,
δ = 2 φ ( z ) 2 ϕ .

Metrics